

1S24 User Guide Arc Fault Monitoring System

RMS Mors Smitt

Advanced Protection Devices

Page 1 of 68

1S24 User Guide

About This Manual

This User Guide covers all 1S24 relays manufactured from November 2025. Earlier relays do not necessarily incorporate all the features described. Our policy of continuous development means that extra features & functionality may have been added.

The 1S24 User Guide is designed as a generic document to describe the common operating parameters for all relays built on this platform.

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any Registered or unregistered design rights) are the property of Relay Monitoring Systems Pty Ltd. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Relay Monitoring Systems Pty Ltd, nor shall any model or article be reproduced from this document without consent from Relay Monitoring Systems Pty Ltd.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contact Us

RMS Mors Smitt
19 Southern Court • Keysborough 3173 • AUSTRALIA
Phone +61 3 8544 1200

Email <u>sales.rms@wabtec.com</u> • Web <u>http://www.morssmitt.com/rms</u>

Contents

Contents	3
Documentation	5
Technical Bulletin	5
User Guide	
Sensor Installation	6
1S30 Sensors	6
Sensor Placement	
Sensor Mounting	
Example Sensor Placement	9
1S40 Linear Sensors	13
1S40 Linear Sensor Assembly	15
1S40 Linear Sensor Compartment Fixing	16
Scheme Wiring	17
1S24 Connection diagrams	
Linear Sensor Connections	
Example Schematic – Direct Arc Trip Only Application	
Example Schematic – Current Checked Arc Trip Application	
Terminal Layout and Module Dimensions	
Surface or Din Rail Mounting	
Horizontal or Vertical Flush Mounting	
Custom Labels	
Communications	29
Physical Connections	29
IP Addressing	
1S24 Arc Fault Monitor Configuration	31
Web Browser Session	31
Relay Build	33
IP Configuration	34
Arc Configuration	42
State	
Trip 1	
Trip 2	
Trip 3 (In devices with 3 trip outputs)	
Zone Linear Sensor Configuration	
Arc Status	
State	
Flag	
Count	
Summary of 1S24 Configuration	45

Monitor Indications	46
Front Layout	46
Power Up	
System Status	
Service Alarm	
Arc Sensor Indicators	
Arc Sensor Circuit Supervision	
Arc Trip	
Global Arc Block	
Flag Reset	
Reboot	
Reset to Factory Default	
Firmware Update	51
Introduction	51
Firmware Package	51
T 11 01 (=0
Trouble Shooting	53
License file not valid or present	53
Invalid IP Address Specified in ICD File	
System Status	
Commissioning	57
Commissioning Preliminaries	57
Site Commissioning Verification Checklist	
System Power Up	
Sensor Failure Alarm Verification	59
Arc Trip Testing	
Sensor Failure Alarm Trouble Shooting	
ARC Sensor Supervision Trouble Shooting	
ARC Trip Trouble Shooting	60
General Ethernet Communications Trouble Shooting	
Installation	63
Handling of Electronic Equipment	63
Safety Section	
Explanation of Symbols & Labels	
Unpacking	
Storage & Handling	
Equipment Operating Conditions	
Equipment Connections	
Decommissioning & Disposal	
Maintenance	68
Mechanical Inspection	68
Test Intervals	

Documentation

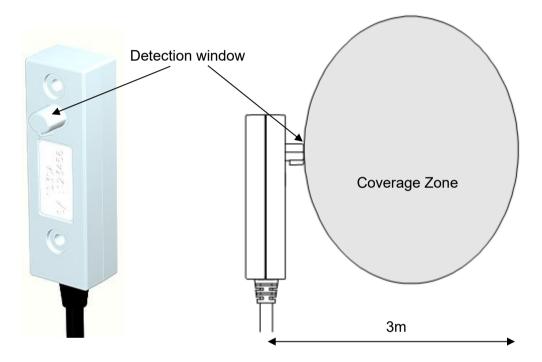
Technical Bulletin

The detailed technical attributes, functional description & performance specifications for the 1S24 are described in the product Technical Bulletin.

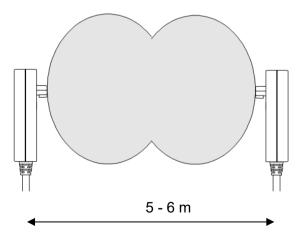
The order of precedence for product information is as follows:

- Technical Bulletin
- User Guide

User Guide

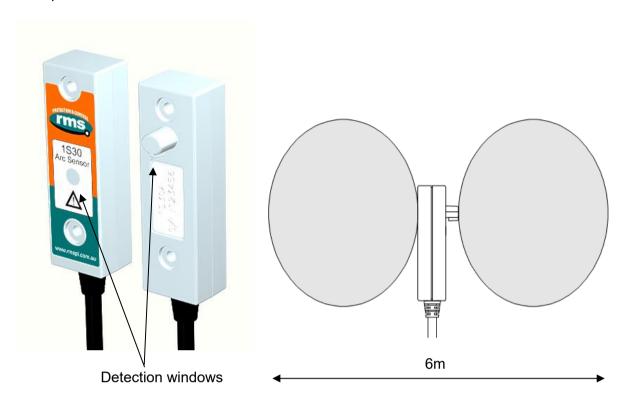

This User Guide covers all 1S24 relay versions & describes the generic features & attributes common across all versions.

Sensor Installation

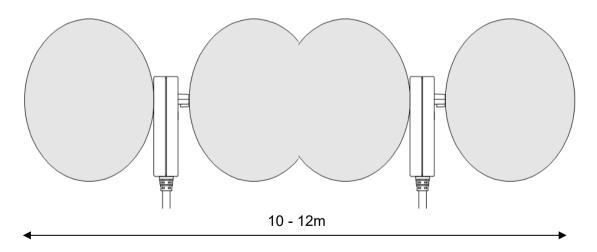

1S30 Sensors

The 1S30 sensor is available as a single detector or dual detector package.

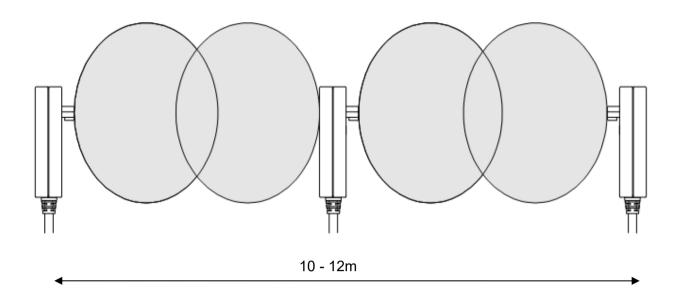
The 1S30A single detector version is depicted below showing the location of the detection window and the approximate coverage zone:



The recommended spacing for the 1S30A single detectors is approximately 5 - 6 m to ensure adequate detection overlap.



Page **6** of **68**


The 1S30B Dual detector version provides an additional detection window for dual zones of coverage as depicted below :

The recommended spacing for the 1S30B single detectors is approximately 5 - 6 m to ensure adequate detection overlap, this combination provides an overall coverage zone of approximately 10 - 12 m.

The 1S30A and 1S30B sensors may also be mixed to provide various coverage combinations, again spacing's of approximately 5 - 6 m should be observed to ensure adequate detection overlap.

Sensor Placement

Sensors need to be mounted to provide full coverage of the switchgear cubicles to be protected. Where the protected zone is larger than the sensor coverage then the use of multiple sensors is required.

Precise positioning of the sensors is generally not required as the light caused by the arc is reflected from the walls.

Sensor Mounting

The 1S30 is suitable for flush panel mounting in a number of configurations, for further information on mounting arrangements and mounting hardware refer to the 1S30 Technical Bulletin.

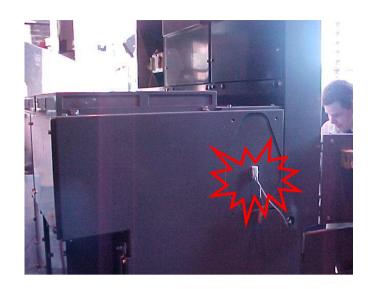
Example Sensor Placement

The following are some typical examples of sensor placement.

Sensor placement inside CB racking chamber

Sensor placement inside busbar chamber

Sensor placement inside cable termination chamber

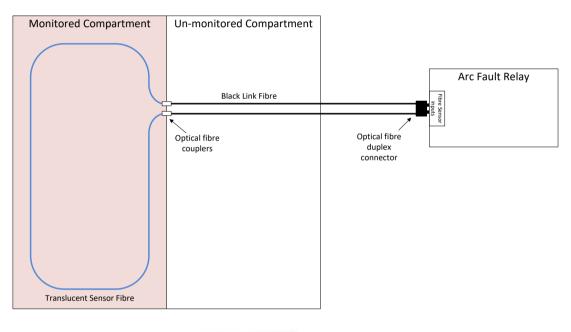

Sensor placement for switchgear Busbar coverage (External through Hole Detector)

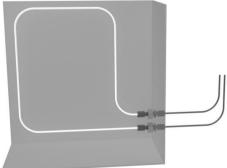

Sensor placement near Low Voltage Contactor for a Variable Speed Drive

Sensor placement for Switchgear cable termination chamber (External through Hole Detector)

Sensor placement for end of Bus chamber (External through Hole Detector)

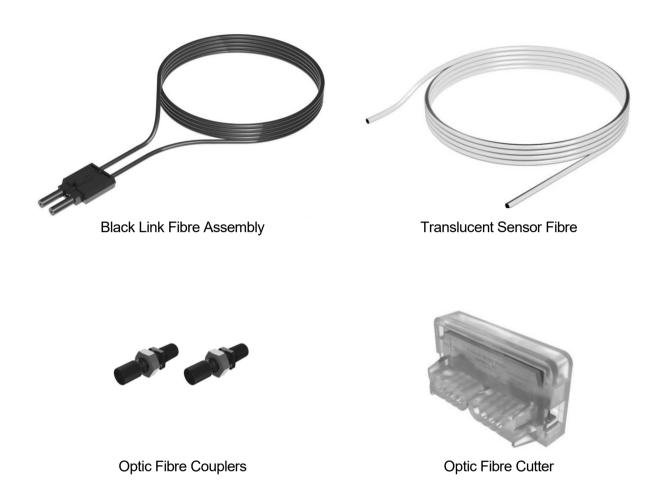
Sensor placement for Switchgear cable termination chamber (External through Hole Detector)

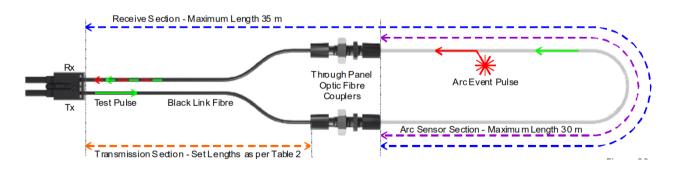

1S40 Linear Sensors


The 1S40 linear sensor may be applied to protect large volumes where multiple point sensors would otherwise be required.

A separate 1S40 linear sensor is required for each segregated protection zone.

The linear sensor kits provide both a black link fibre and a translucent arc sensor fibre. The translucent fibre is located within the detection zone and black link fibres allow routing of the linear sensor back to the relay.


Translucent and black link fibres are joined through the use of optical fibre couplers. An optical fibre duplex connector is utilised for relay connection



For the most effective coverage it is preferable to loop the translucent fibre within the monitored compartment or chamber as shown in the diagrams above. A light intensity of >10,000 Lux over a length of 300mm is required to cause an arc trip.

The 1S40 kit comprises of lengths of black link fibre (pre-terminated with a duplex connector for relay connection), unterminated translucent fibre, 2 x optical fibre couplers and a fibre optic fibre cutter.

The individual components are combined per the diagram below:

The following sensor dimensioning criteria must be satisfied for the arc fault relay linear sensor input to self calibrate and function correctly:

- 1. Transmission Section (section of clad fibre from relay Tx connection) to optic fibre coupler must be ≤ 40m and cut to the set lengths in Table 2 within a tolerance of ±10%
- 2. Receive Section (section of bare and clad fibre back to the relay Rx connection) must be \leq 35m
- 3. Arc Sensor Section (section of bare fibre) must be ≤ 30 m

Transmission Section Length	Setting
0 metres	<1
1 metres	1m
5 metres	5m
10 metres	10m
20 metres	20m
30 metres	30m
40 metres	40m

Table 2

The chosen Transmission Section Length must also be configured in the 1S24 Fibre Loop Sensor configuration screen – refer to Linear Sensor Configuration.

1S40 Linear Sensor Assembly

Once the lengths of black link fibre and translucent sensor fibre have been determined cut them using the optic fibre cutter provided – other cutting tools must not be used as this will lead to excessive attenuation within the fibre and result in incorrect operation.

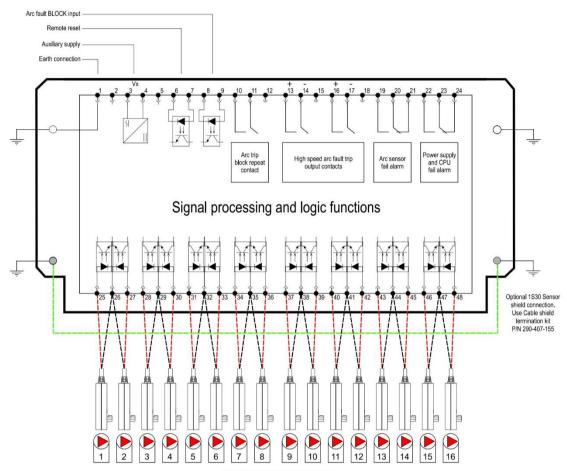
The cut sections of black link fibre and translucent fibre are coupled using the provided optic fibre couplers. Slide the cut lengths completely into the couplers and hand tighten the coupler cinch nuts taking care not to strip the cinch nut threads.

Coupled Black Link and Translucent Sensor Fibres

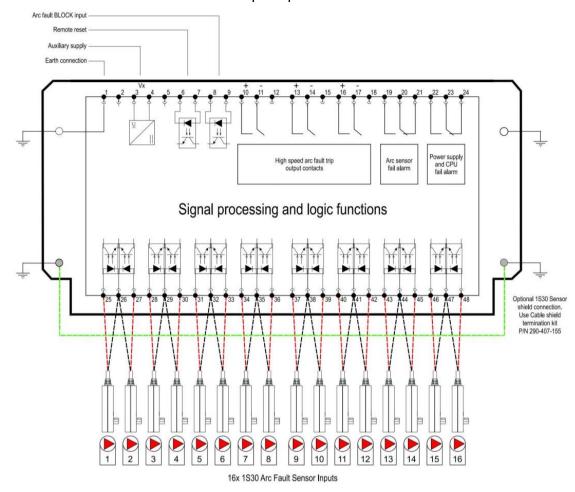
1S40 Linear Sensor Compartment Fixing

The optic fibre couplers may be positioned and held in place with the provided fixing nuts at a compartment interface.

The optic fibres may be retained using cable ties or silicon adhesive. When using silicon adhesive no more than 10% of the sensor fibre shall be masked by the silicon.


Care should be taken not to apply excessive force when fixing the 1S40 sensor. Excessive force or rough handling may result in damage to the fibre sensor.

Care should also be taken when bending the 1S40 sensor to ensure that the minimum bending radius of 30mm is adhered to.


Scheme Wiring

1S24 Connection diagrams

2 Trip Output Version

3 Trip Output Version

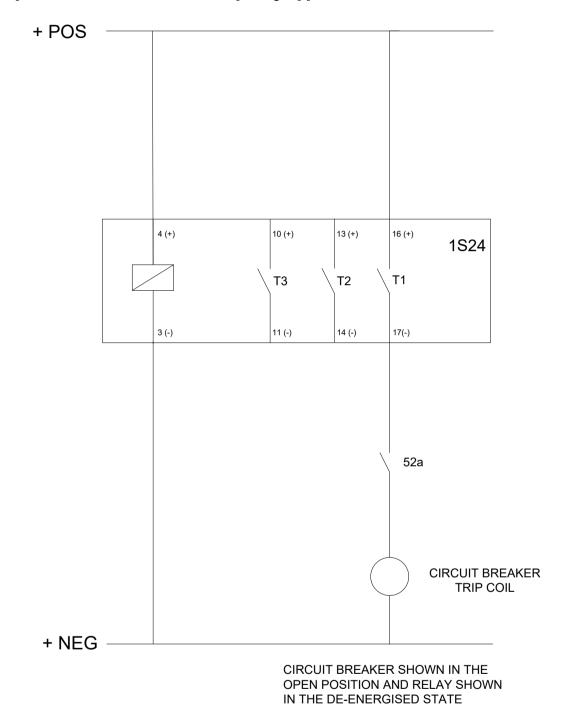
The above diagrams show the 1S24 connections.

The connected sensor inputs need to be enabled and unused inputs disabled via the Web browser configuration tool. This is essential to:

- Allow connected sensor inputs to operate for an ARC Fault
- · Allow connected sensor inputs to be supervised
- Ensure unconnected sensor inputs do not indicate an Arc sensor Alarm condition

Linear Sensor Connections

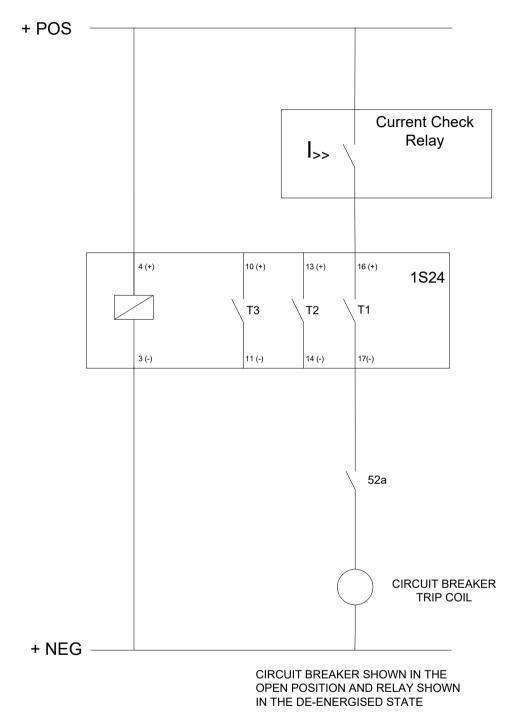
A unit with 1S24 Linear sensor connections is pictured below showing the connection points for the Linear sensors:



Linear Sensor equipped units provide inputs for 2 Linear sensors and 12 point sensors.

Each Linear Sensor input provides a Transmit (TX) and Receive (RX) set of connections.

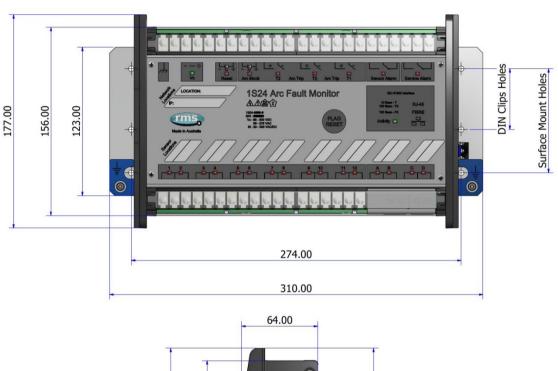
For details of the Linear Sensor refer to the 1S40 Technical Bulletin.


Example Schematic - Direct Arc Trip Only Application

Note: When using Hybrid high speed trip outputs:

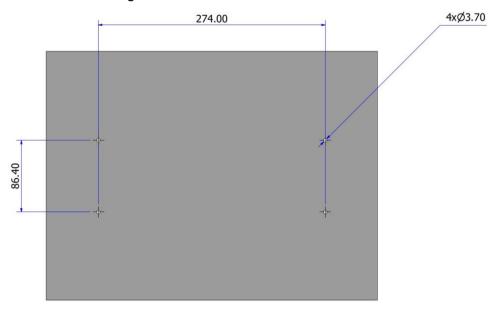
1. The polarity markings as nominated on the trip output connections must be observed to ensure correct operation.

Example Schematic - Current Checked Arc Trip Application

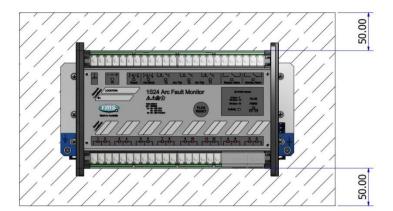


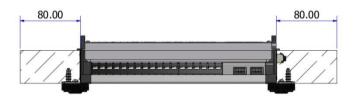
Note: When using Hybrid high speed trip outputs:

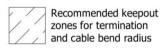
1. The polarity markings as nominated on the trip output connections must be observed to ensure correct operation.


Terminal Layout and Module Dimensions

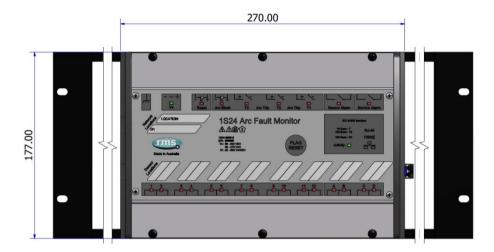
Surface or Din Rail Mounting

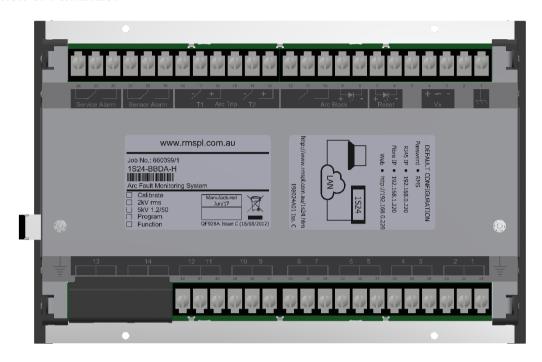

The drilling plan for surface mounting is shown below:


The module may alternatively be mounted on a din rail by using 2 optional din rail mounting kits $(2 \times RMS P/N: 290407157)$.

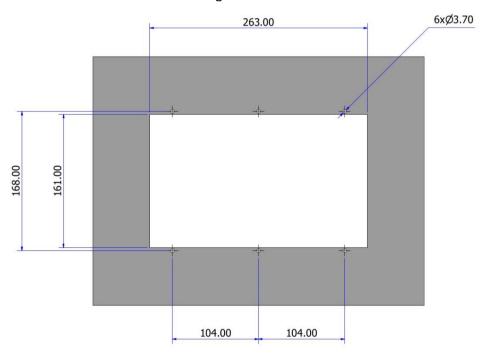


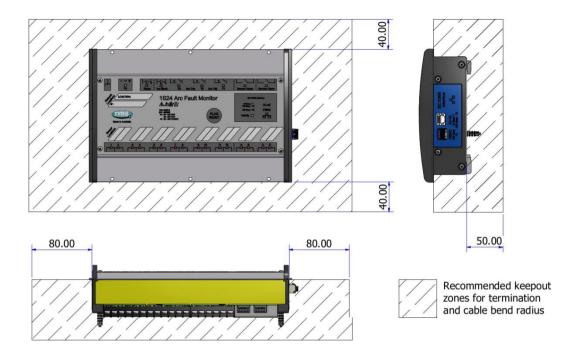
The recommended keep out zones to allow for cable terminations are shown below:




Horizontal or Vertical Flush Mounting

The Horizontal or Vertical module options allow for rack frame or flush panel mounting.




Rear view of Terminals:

The cutout dimensions for flush mounting are shown below:

The recommended keepout zones to allow for cable terminations are shown below:

Custom Labels

The 1S24 front panel makes provision for two (2) custom labels, one label identifies the sensor location and the remaining label provides IED identification and IP address details.

The default labels supplied with the relay may be marked up by hand or alternatively custom labels may be produced using the template provided on the RMS website, printed and slipped behind the clear windows on the front panel as depicted below.

Communications

Physical Connections

The 1S24 is ordered with either of the following Ethernet connection options:

Standard Single Port: RJ45 10Base-T / 100Base-TX

The RJ45 port is utilised for webserver device configuration.

Optional Two Port: RJ45 10Base-T / 100Base-TX and

Fibre 100Base-TX

The two port option allows either port to be used for webserver device configuration.

Fibre Port Details

Connectors: Duplex LC connector

Fibre Type : $50/125 \mu m$ multimode fibre

Transmitter Type: 1310 nm laser based transmitter

IP Addressing

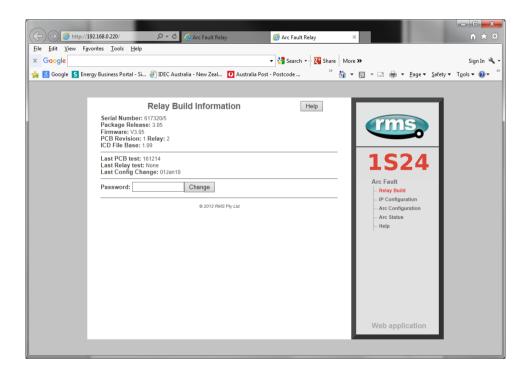
The 1S24 IED comes preconfigured from the factory with the IP address 192.168.0.220. The default IP address may be used in a web browser session to undertake relay configuration. Full details of relay configuration are described in subsequent sections of the user guide.

Reconfiguration of the 1S24 IP address may be required according to the IP addressing defined in your network, any subsequent web browser sessions will need to utilise the reconfigured IP address.

1S24 Arc Fault Monitor Configuration

Web Browser Session

Configuration of a 1S24 can be undertaken either via direct connection to a PC or via a LAN.


Direct connection to a PC or connection via a LAN is possible using a standard Ethernet patch lead.

Whether the communication is direct or via a LAN, both the PC and the 1S24 need to have IP addressing within the same network.

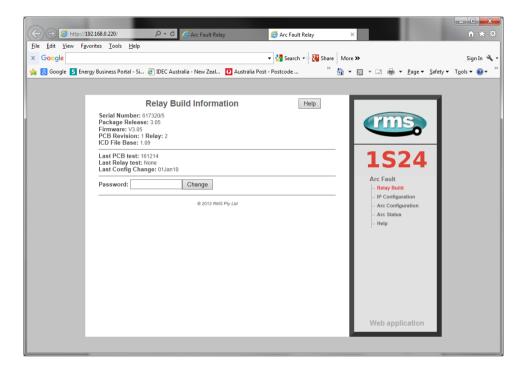
With a subnet mask of 255.255.255.0 the first 3 octets of the IP address need to be the same for the PC and the 1S24 and the last octet needs to be unique, for example:

1S24 IP Address: 192.168.0.220 PC IP Address: 192.168.0.238

In the above example entering the 1S24 IP Address (192.168.0.220) into the PC web browser address field will establish a web browser session displaying the Relay Build Information and a menu tree to navigate to the other configuration screens.

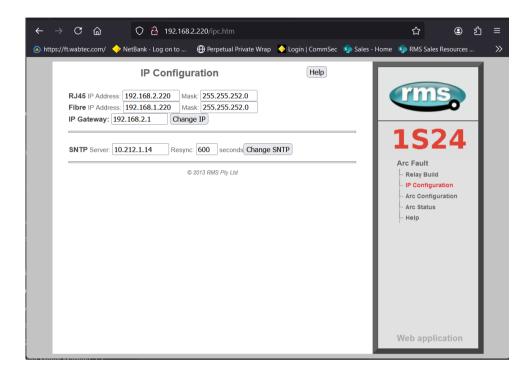
To make any changes you will be prompted for a User name and Password

The factory default username and password is:


Username: admin Password: RMS

The username and password need only be entered once for each web server session and allows for multiple setting changes with access automatically timing out after 2 minutes of inactivity.

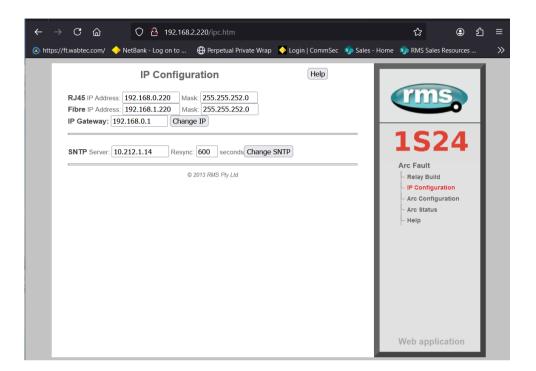
Relay Build


The Relay Build screen provides device details such as the of the Serial Number and Firmware version.

The Password may be changed at this point by entering your new password and pressing the Change button, enter the user name and previous password if prompted.

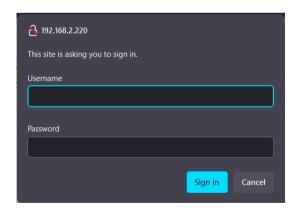
IP Configuration

The IP Configuration screen displays and allows editing of the IP address parameters for the RJ45 port, Fibre port, Gateway and the SNTP Server.

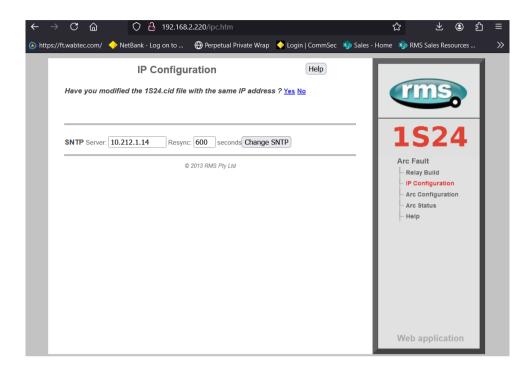

To change the IP address edit the IP address field and then click the Change button and enter the user name and password if prompted.

Note that the Fibre port must be on a different IP network to the RJ45 port.

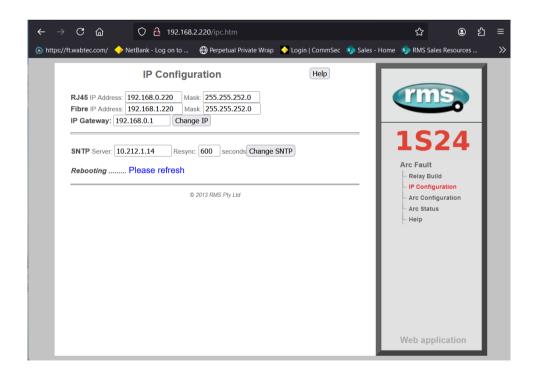
The subnet mask will need to match that of the network being connected to.

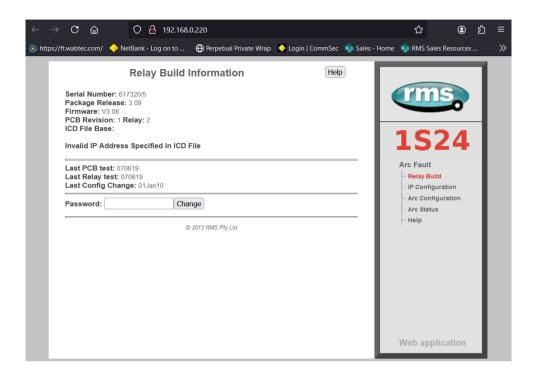

If an SNTP server is available the SNTP server IP address can be set in the IP Configuration screen, if left blank the 1S24 will attempt to find a default SNTP server.

Let's say we want to change the IP address and IP gateway to 192.168.0.220 and 192.168.0.1 respectively:



Then press the Change IP button.

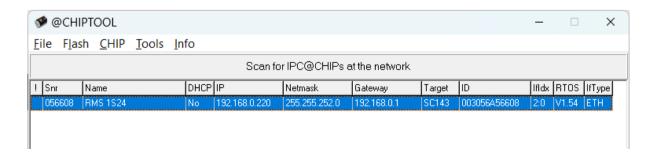

Enter the Username and Password if prompted:


You will then get the following message:

Choose Yes and this will initiate a device reboot and you will get the following message:

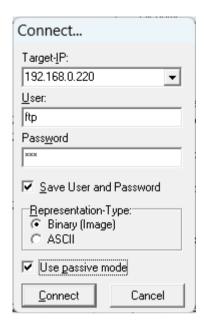
Once the reboot completes enter the changed IP address in your browser (you will need to make sure that your PC is also on the same network range as the changed IP address):

A warning message will appear on the Relay Build screen: "Invalid IP Address Specified in ICD File"


The last step is to change the address specified in the ICD file of the device.

To access the ICD file use @Chiptool.

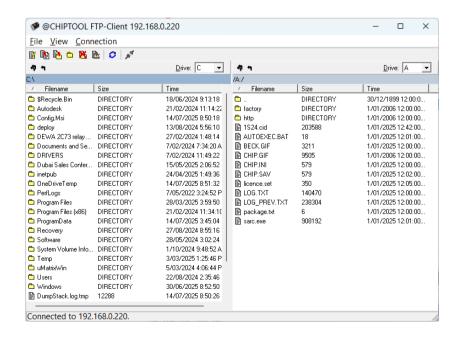
@Chiptool may be downloaded using the following link:


https://hmsnetworks.blob.core.windows.net/nlw/docs/default-source/products/anybus/monitored/software/chiptool-install-v7-2-7-2.exe?sfvrsn=90a514b7 4&download=true

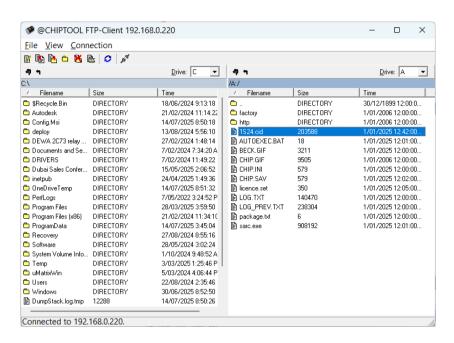
With @Chiptool you can view any 1S24 device on your network:

Page 37 of 68

To access the device ICD file right click on the device in question in the @Chiptool application window and select FTP:



The User and Password are:


User: ftp Password: ftp

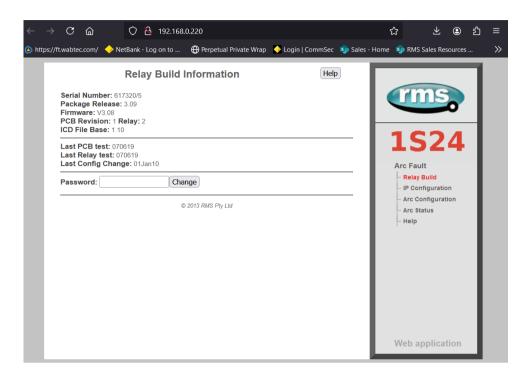
Ensure the "Use passive mode" is selected.

In the right hand of the FTP session you will see the contents of the 1S24 device.

Look for the file 1S24.cid, right click on the file and choose Edit.

This will start a notebook session and allow you to edit the 1S24.cid file:

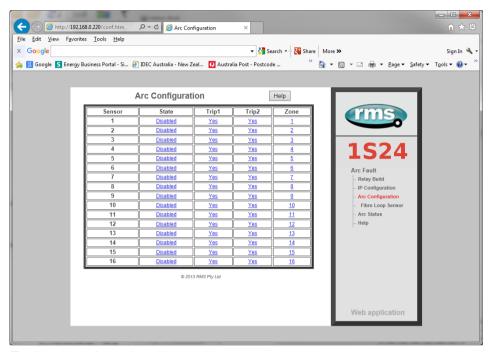
```
ftpD0DF.tmp
File
       Edit
              View
</Header>
<Communication>
       <SubNetwork type="8-MMS" name="Subnet1">
     <ConnectedAP iedName="RMS_1S24" apName="SubstationRing1">
             <Address>
                <P type="IP">192.168.2.220</P>
<P type="IP-SUBNET">255.255.252.0</P>
                <P type="OSI-AP-Title">1,1,9999,1</P>
<P type="OSI-AE-Qualifier">12</P>
                <P type="0SI-PSEL">00000001</P>
<P type="0SI-SSEL">0001</P>
                <P type="0SI-TSEL">0001</P>
<P type="IP-GATEWAY">192.168.2.1</P>
                <P type="S-Profile">1</P>
             <P type="MAC-Address">01-0C-CD-01-00-01</P>
<P type="VLAN-PRIORITY">4</P>
<P type="VLAN-PRIORITY">4</P>
```


Edit the highlighted text:

The IP addresses need to match the changed device IP addresses:

```
<?xml version="1.00" encoding="UTF-8"?>
<SCL xmlns="http://www.iec.ch/61850/2003/SCL" xmlns:sip4="http://www.sie
   <Header id="RMS_1S24" version="2" revision="00" nameStructure="IEDNam</p>
      <Text>ICD-File for device: RMS_1S24</Text>
   </Header>
   <Communication>
      <SubNetwork type="8-MMS" name="Subnet1">
         <ConnectedAP iedName="RMS 1S24" apName="SubstationRing1">
            <Address>
               <P type="IP">192.168.0.220</P>
               <P type="IP-SUBNET">255.255.252.0</P>
               <P type="0SI-AP-Title">1,1,9999,1</P>
               <P type="OSI-AE-Qualifier">12</P>
               <P type="0SI-PSEL">00000001</P>
               <P type="OSI-SSEL">0001</P>
               <P type="OSI-TSEL">0001</P>
               <P type="IP-GATEWAY">192.168.0.1</P>
               <P type="S-Profile">1</P>
```

The device will now need to be power cycled for the ICD file change to be recognised.


Once rebooted the warning message should no longer appear on the relay build screen:

The IP address change is now complete.

Arc Configuration

The Arc Configuration screen provides configuration settings for up to 16 Sensor inputs.

Each sensor input has 4 settable parameters:

State

Armed or disabled, defines if the Sensor input is enabled or disabled, click on the field to change the state and enter the user name and password if prompted.

Trip 1

Yes or No, determines if the Sensor input operates the Trip 1 output, click on the field to change the state and enter the user name and password if prompted.

Trip 2

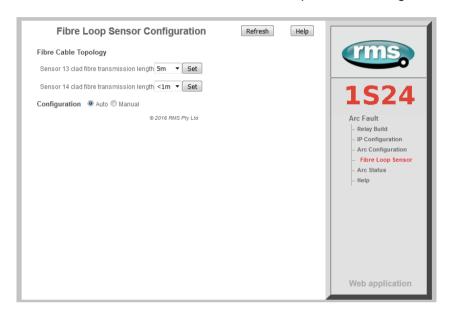
Yes or No, determines if the Sensor input operates the Trip 2 output, click on the field to change the state and enter the user name and password if prompted.

Trip 3 (In devices with 3 trip outputs)

Yes or No, determines if the Sensor input operates the Trip 3 output, click on the field to change the state and enter the user name and password if prompted.

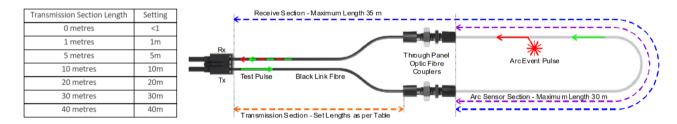
Zone

The Zone Setting is not required in standard applications using the physical trip contacts.


Page 42 of 68

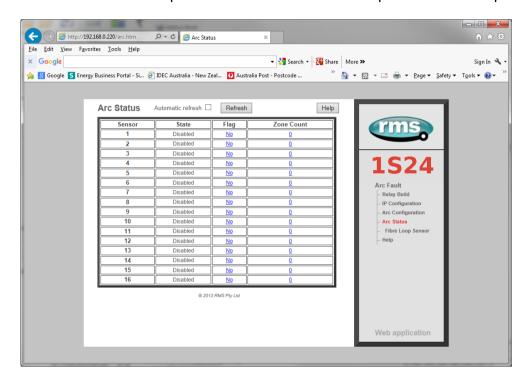
Linear Sensor Configuration

1S24 relays fitted with Linear Sensor inputs provide 12 point sensor inputs and 2 Linear Sensor inputs denoted 13 and 14.


For Linear Sensor inputs that have a Linear Sensor connected there is a need to configure the Fibre Cable Topology to ensure correct arc detection and supervision.

The screen shot below shows the Fibre Loop Sensor Configuration screen:

Set the configuration to "Auto".


For each of the Linear sensors inputs select the transmission section length in the drop down field in accordance with the following fixed lengths:

Sensor 13 clad fibre transmission length 5m ▼ Set

Arc Status

The Arc Status screen provides status information on up to 16 sensors inputs.

State

The State column determines the state of each sensor input.

The following states are reported:

Disabled ARC Sensor is disabled Armed ARC Sensor is armed

Tripped ARC detected (changes for the period of the trip)

Failed ARC sensor supervision failure

Initializing ARC sensor initializing (transitory)

Stuck ARC sensor stuck on

Flag

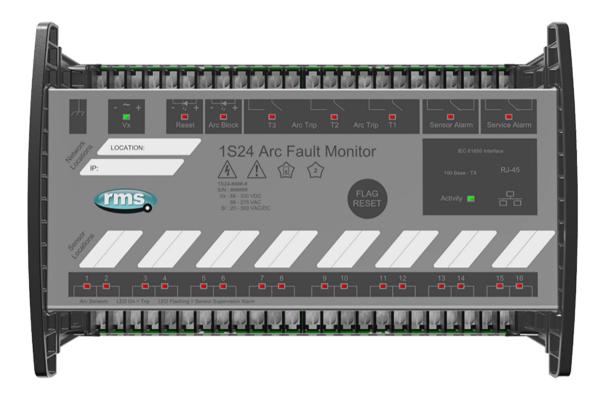
The Flag column will indicate and latch for an Arc Sensor operation, individual Flags may be reset by clicking on the sensor flag status and entering the user name and password if prompted.

Count

The Count field provides a log of ARC sensor operations since power on or the last counter reset, the individual sensor counters may be reset to 0 by clicking on the count field and entering the user name and password if prompted.

Page 44 of 68

Summary of 1S24 Configuration


The following steps outline the 1S24 Configuration:

- ✓ Establish a Web Browser session using the default IP address
- ✓ Set up the IP addressing for the SNTP server
- ✓ Arm the ARC Sensor inputs to be utilised in the application
- ✓ Set which trip outputs are to be operated by the respective ARC sensors

Monitor Indications

Front Layout

The picture below depicts the indications provided on the front of the Arc Fault Monitor.

Power Up

When powering up, all the Leds will flash once and then extinguish and then in turn sequentially illuminate 1 led at a time until all Leds are illuminated – the sequence takes about 30 secs during the boot cycle.

When the boot cycle is complete the 1S24 will indicate the current state.

System Status

	Auxiliary Supply or Relay Healthy Indication	
	LED State	Meaning
	On Solid	Healthy
	Fast Flashing	CID loading error
- ~ +	(approx. three times every sec)	
□ ∨x	Slow Flashing	SNTP sync fail
VX	(approx. once every sec)	
	Off	Internal Communications failure
	Refer to the Commissioning section : Interpreting Vx Auxiliary Supply or Relay Healthy Indications for further details	
10 Base - T 100 Base - TX RJ-45 Activity	Et	hernet Activity

Service Alarm

The module self-supervision checks the following:

- Auxiliary supply failure
- Internal supply rail is outside acceptable limits
- CPU Hardware watchdog failure

Arc Sensor Indicators

Indicate solid when an Arc Sensor has detected an Arc, the LEDs are reset after pressing the Flag Reset.

A flashing Arc Sensor LED indicates a failure of the sensor; refer to the Sensor Alarm indicator description.

Arc Sensor Circuit Supervision

Indicates solid when an Arc Sensor has faulted either due to an open circuit, sustained short circuit (>10 sec) or high ambient lighting.

The affected sensor will be indicated by its front panel sensor LED 1-16 flashing.

The Sensor Alarm will self-reset upon the fault conditions being corrected.

Arc Trip

Indicate solid when the respective assigned self-reset Arc Trip contacts operate. The LEDs reset when the Arc Trip contacts self-reset.

Global Arc Block

Indicate solid when the Global Arc Block input is energised, all Arc Trips are blocked.

Flag Reset

FLAG RESET	To reset the ARC Sensor LEDs
Reset	The ARC sensor LEDs may also be reset by energising the binary input

Reboot

A reboot is achieved by applying power to the relay, all the Leds will flash once and then extinguish and then in turn sequentially illuminate 1 led at a time until all Leds are illuminated – the sequence takes about 30 secs.

Alternatively if the relay is powered, hold down the Flag Reset button for about 6 sec until all of the Leds (except Service) start flashing, and then release the Flag Reset button. The LEDs will continue to flash for approx. 9 secs and then extinguish and then in turn sequentially illuminate 1 led at a time until all Leds are illuminated – the sequence takes another 20 secs approx.

When the boot cycle is complete the 1S24 will indicate the current state.

The reboot must be used after loading in an edited .icd file into the IED.

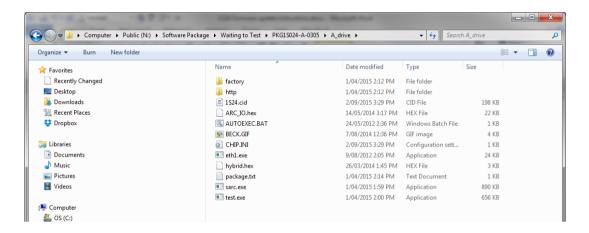
The reboot may also be required if for some reason the 1S24 does not respond to web server commands or becomes unresponsive to ftp or terminal sessions.

Reset to Factory Default

With the relay unpowered, hold down the Flag Reset button and power up the relay, continue holding down the reset button until the Leds commence flashing rapidly (approx. 12 secs) then release the reset button. After releasing the reset button all of the Leds (except Service) will continue flashing rapidly and then extinguish (approx. 10 secs). The Leds will then in turn sequentially illuminate 1 led at a time until all Leds are illuminated – the sequence takes another 20 secs approx.

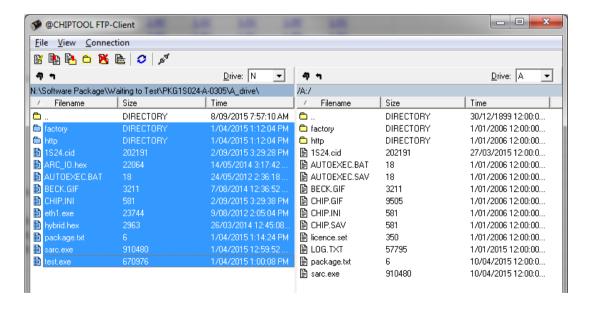
When the boot cycle is complete the 1S24 will indicate the current state.

The Cold Boot is used for reverting the IED back to factory default settings including default passwords.


Firmware Update

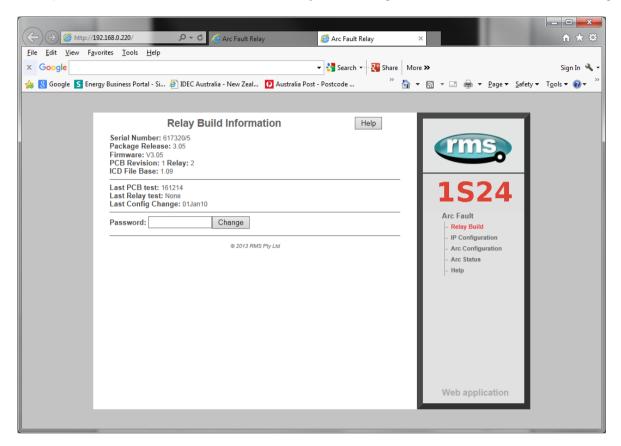
Introduction

An FTP tool is required to load firmware updates into the 1S24; @CHIPTOOL mentioned earlier in the manual allows HTTP, FTP and Telnet sessions.


Firmware Package

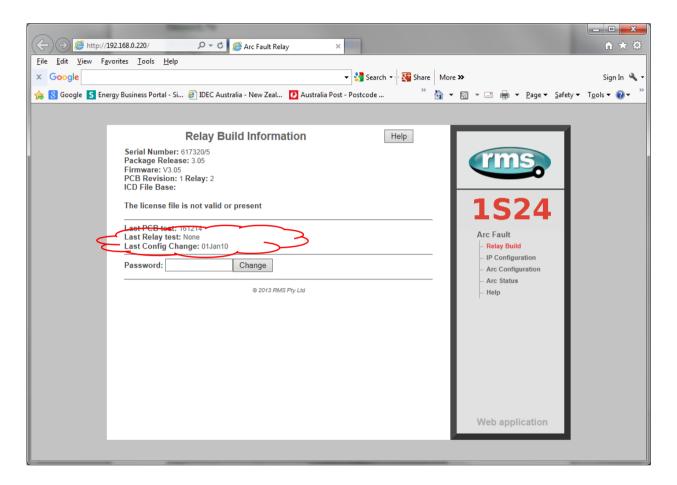
The contents of a firmware update package will contain a directory called A_drive:

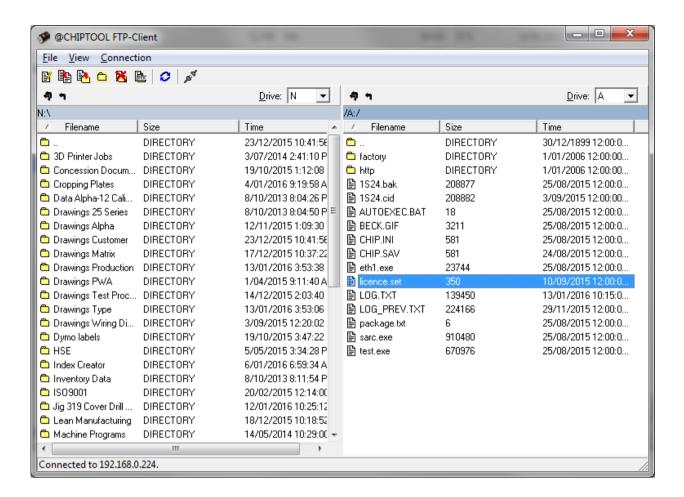
Using an FTP tool transfer across all files and subdirectories to the A:/ drive of the device.


In the FTP tool select all files residing on your PC located under the software package \A_drive, right click on the selection and choose copy:

These files will then transfer across to the 1S24.

Then reboot the device.


Set up a web browser session of the device, you should get a similar screen to the following:

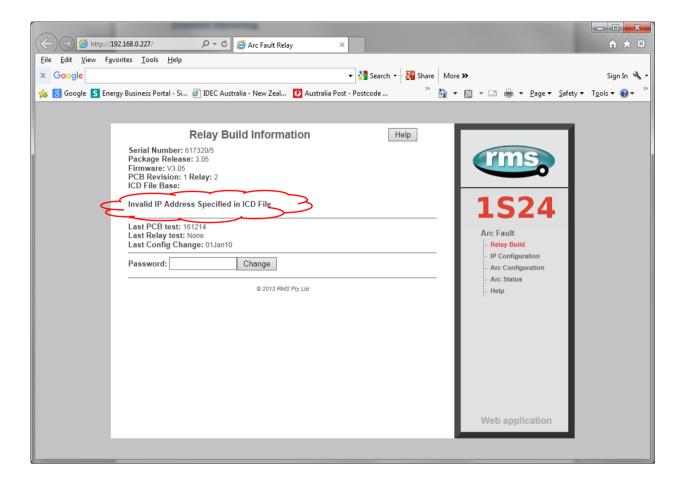

All is well and the 1S24 has been upgraded!

Trouble Shooting

License file not valid or present

Using an FTP tool view the \A_drive and check whether the license.set file is present.

Later 1S24 builds have introduced a license key which is installed in the factory and cannot be reinstalled by the end user.


If the licence.set file is still present it is recommended that the contents of the \A_drive be reinstalled per the Firmware Update section of the User Guide. If you need a copy of your Firmware please contact your RMS representative for further assistance.

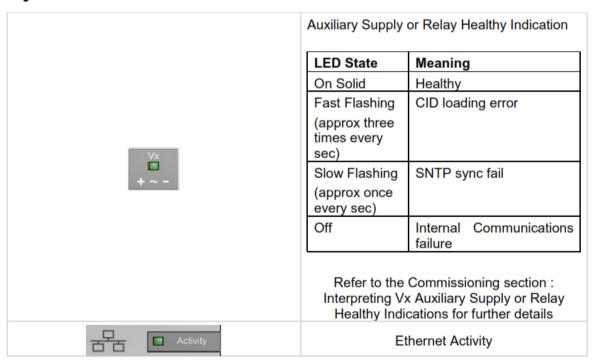
If the licence.set file is not present please contact your RMS representative for further assistance providing the Beck Chip serial number, with this information a replacement copy of the device licence.set file can be supplied.

The Beck Chip serial number can be viewed using @ChipTool:

Invalid IP Address Specified in ICD File

If you get the above message displayed in the relay build screen then the IP address setting in the device is not in alignment with the ip address in the 1S24.cid file.

Either edit the 1S24.cid file or amend the ip configuration in the device so that the ip addresses are in alignment.


Refer to the IP Configuration section of the User Guide for further instructions.

If editing the 1S24.cid file, there should only be one instance you need to change for example:

System Status

Check the Vx LED for other useful trouble shooting information.

System Status

Commissioning

Commissioning Preliminaries

Carefully examine the module to ensure that no damage has occurred during transit. Check that the model number and rating information are correct.

Insulation

The relay, and its associated wiring, may be insulation tested between:

- all electrically isolated circuits
- all circuits and earth

An electronic or brushless insulation tester should be used, having a dc voltage not exceeding 1000V. Accessible terminals of the same circuit should first be strapped together. Deliberate circuit earthing links, removed for the tests, subsequently must be replaced.

ARC Trip Verification

ARC Trip Verification will require a flash source to initiate sensor operation.

A high powered photographic flash is the most convenient means of initiating positive sensor operation.

Note that mobile phone or small compact camera flashes may not have sufficient power to cause sensor operation.

The RMS 'Arc Flash Timing Test Guide' outlines a suggested test setup to provide a flash source and determine ARC Trip times. The 'Arc Flash Timing Test Guide' is available on the RMS website:

https://www.morssmitt.com/uploads/files/catalog/products/arc-flash-timing-test-guide(3).pdf

Arc only tests are conducted as per the section 'Timing test of 1S25 (no current check)' substituting the wiring for the 1S25 with equivalent wiring for the 1S24.

Note that the nominated RMS test guide makes use of conventional binary outputs for flash initiation, whilst this is convenient and will work with the majority of test sets the technique will introduce some minor delays in the timing test results due to the latency of the conventional binary output.

Where more precise timing is required then specialised test equipment should be employed that utilises solid state outputs for arc flash initiation. There are commercially available test sets on the market that provide this capability.

Site Commissioning Verification Checklist

Observe all site specific standard safety procedures.

The following tests are undertaken following the completion of all 1S24 ARC Monitor configurations, scheme wiring and the wiring of all arc fault sensors.

System Power Up

Item	Description	Complete
1	Confirm all necessary primary equipment isolations	
2	Confirm all necessary secondary equipment isolations (including trip outputs)	
3	Check fitment of 1S30 and or 1S40 optical sensors and cable condition	
4	Check panel installation of the 1S24 monitor	
5	Check for correct case earthing	
6	Check the 1S24 is wired to the protection design schematic	
7	Confirm Fail alarm relay is closed (Terminals 23 and 24)	
8	Apply correct Auxiliary voltage to power up the 1S24	
9	Upon power up the relay enters a relay boot cycle, all the Leds will flash once and then extinguish and then in turn sequentially illuminate 1 led at a time until all Leds are illuminated – the sequence takes about 14 secs. Observe that the green power LED remains illuminated (either solid or Flashing: refer to System Status section for complete description of indications) after the relay boot cycle.	
10	Confirm Fail alarm relay is open (Terminals 23 and 24) and the associated LED is extinguished	
11	Using a web browser check 1S24 configuration settings match protection setting specifications	
12	Confirm that the Arc Sensor fail alarm LED remains off and none of the sensor LEDs are flashing (Refer Sensor Failure Trouble shooting if a sensor fail is indicated)	
13	Confirm all Sensor LED's remain OFF	
14	Confirm the Ethernet LED is showing activity	

Sensor Failure Alarm Verification

Item	Description	Complete
1	Disconnect each sensor from the associated 1S24 sensor input	
2	Confirm the associated sensor LED flashes, the Sensor Alarm LED illuminates and operation of the Relay Fail Alarm output contact	
3	Reconnect each sensor back to the associated 1S24 sensor input	
4	Confirm the associated sensor Fail indications clear and the Relay Fail Alarm output contact opens	
5	In turn short across each 1S24 sensor input (not applicable for 1S40 linear sensor inputs)	
6	Confirm the associated sensor LED flashes, the Sensor Alarm LED illuminates and operation of the Relay Fail Alarm output contact	
7	Remove the short on each 1S24 sensor input	
8	Confirm the associated sensor Fail indications clear and the Relay Fail Alarm output contact opens	

Arc Trip Testing

Item	Description	Complete
1	Initiate the operation of each sensor by the use of a suitably powered camera flash	
	* If a current check interlock is employed in your ARC Fault protection scheme ensure that current is injected into the associated Overcurrent relay to cause operation of the current check element at the same time the sensor is flashed	
2	Check operation of the corresponding sensor LED and the arc fault trip output contacts	
3	View the web browser settings of the 1S24 to explain any unexpected behavior	
4	Confirm operation of Flag Reset after each tripping operation. Repeat ARC trips and confirm correct operation of remote reset using the web browser	

Refer also to the RMS 'Arc Flash Timing Test Guide' for a suggested test setup to provide a flash source and determine ARC Trip times. The 'Arc Flash Timing Test Guide' is available on the RMS website:

https://www.morssmitt.com/uploads/files/catalog/products/arc-flash-timing-test-guide(3).pdf

Alternatively utilise commercially available test sets that provide Arc Flash testing capability. Apply a Global ARC Fault block.

Item	Description	Complete
1	Initiate the operation of each sensor by the use of a suitably powered camera flash	
2	Confirm blocking of the arc fault trip output contacts	

Sensor Failure Alarm Trouble Shooting

Item	Description	Complete
1	If any arc sensor LED's are flashing re-check the 1S30 wiring integrity or 1S40 linear sensor fibre and associated connections	
2	Check that the sensors are connected to the correct sensor inputs	
3	Using a web browser session check that the correct sensor inputs are enabled and any unused sensor inputs are disabled	
4	If the Sensor Alarm persists disable all of the sensor inputs and check that all Sensor Alarm indications are extinguished	

ARC Sensor Supervision Trouble Shooting

Item	Description	Complete
1	If there is a Sensor Alarm indication re-check the 1S30 wiring integrity or the 1S40 fibre and connection integrity	
2	Check that the sensors are connected to the correct arc sensor inputs and check that the correct sensor inputs are enabled and unused inputs are disabled	
3	Check for high ambient lighting conditions for all the sensors	

ARC Trip Trouble Shooting

If an arc trip occurs without an ARC being present this indicates either:

- a very high ambient light condition is triggering a sensor

or

- short circuit wiring of a 1S30 sensor

In both cases if the condition persists the Supervision output will operate after a 10 sec delay.

Item	Description	Complete
1	Check the 1S30 wiring integrity or check the 1S40 fibre and connection integrity	
2	Check for high ambient lighting conditions for all the sensors	

General Ethernet Communications Trouble Shooting

If you are having trouble communicating with the 1S24 IED or other subscribing IEDs check the following:

Item	Description	Complete
1	Check that the Lan is active and functioning	
2	Check that the 1S24 IED ethernet ports are active and communicating by checking the port activity LEDs	
3	Undertake a ping test on the 1S24 IED	
4	Confirm the IP addressing for each of the devices is correct (check the devices are on the same Subnet) and that devices connected on the same Subnet have unique addresses	

Interpreting Vx Auxiliary Supply or Relay Healthy Indications

The Healthy LED will be illuminated solid to indicate normal operation of the 1S24.

The Healthy LED is also utilised to indicate error conditions to assist in troubleshooting.

The following table summarises all Healthy LED indications:

LED State	Meaning
On Solid	Healthy
Fast Flashing (approx. three times every sec)	CID loading error The .cid file is in error or possibly corrupted, open a web server session where further information is reported on the Relay Build page A common error is a mismatch of the ip address as set in the device compared to that entered in .cid file, refer to the section in the user guide titled: Invalid IP Address Specified in ICD File
Slow Flashing (approx. once every sec)	SNTP sync fail Check SNTP server is functioning or check that the SNTP Server address on the IP config screen is correct

LED State	Meaning
Off	Internal 1S24 Communications failure
	A permanent Internal 1S24 Communications failure will assert the Service Alarm

Installation

Handling of Electronic Equipment

A person's normal movements can easily generate electrostatic potentials of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage, which often may not be immediately apparent but the reliability of the circuit will have been reduced.

The electronic circuits of Relay Monitoring Systems Pty Ltd products are immune to the relevant levels of electrostatic discharge when housed in the case. Do not expose them to the risk of damage by withdrawing modules unnecessarily.

Each module incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to withdraw a module, the following precautions should be taken to preserve the high reliability and long life for which the equipment has been designed and manufactured.

- 1. Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.
- 2. Handle the module by its front-plate, frame, or edges of the printed circuit board.
- 3. Avoid touching the electronic components, printed circuit track or connectors.
- 4. Do not pass the module to any person without first ensuring that you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- 5. Place the module on an antistatic surface, or on a conducting surface which is at the same potential as you.
- 6. Store or transport the module in a conductive bag.

If you are making measurements on the internal electronic circuitry of equipment in service, it is preferable that you are earthed to the case with a conductive wrist strap.

Wrist straps should have a resistance to ground between 500k – 10M ohms. If a wrist strap is not available, you should maintain regular contact with the case to prevent the build-up of static.

Instrumentation which may be used for making measurements should be earthed to the case whenever possible.

Safety Section

This Safety Section should be read before commencing any work on the equipment.

The information in the Safety Section of the product documentation is intended to ensure that products are properly installed and handled in order to maintain them in a safe condition. It is assumed that everyone who will be associated with the equipment will be familiar with the contents of the Safety Section.

Explanation of Symbols & Labels

The meaning of symbols and labels which may be used on the equipment or in the product documentation is given below.

Caution: refer to product information

Caution: risk of electric shock

Functional earth terminal

Note: this symbol may also be used for a

Protective/safety earth terminal if that terminal is part of a terminal block or sub-assembly

eg. power supply.

Unpacking

Upon receipt inspect the outer shipping carton or pallet for obvious damage.

Page **64** of **68**

Remove the individually packaged relays and inspect the cartons for obvious damage.

To prevent the possible ingress of dirt the carton should not be opened until the relay is to be used. Refer to the following images for unpacking the relay:

Outer packing carton showing the shipping documentation pouch.

Address label on top of carton.

Example of the inner packing carton showing the front label detailing the serial number, relay part number & description.

Packing carton with lid open showing relay and packing insert.

Storage & Handling

If damage has been sustained a claim should immediately be made against the carrier, also inform Relay Monitoring Systems Pty Ltd and the nearest RMS agent

When not required for immediate use, the relay should be returned to its original carton and stored in a clean, dry place.

Relays which have been removed from their cases should not be left in situations where they are exposed to dust or damp. This particularly applies to installations which are being carried out at the same time as constructional work.

If relays are not installed immediately upon receipt they should be stored in a place free from dust and moisture in their original cartons.

Dust which collects on a carton may, on subsequent unpacking, find its way into the relay; in damp conditions the carton and packing may become impregnated with moisture and the de-humidifying agent will lose is efficiency.

Equipment Operating Conditions

The equipment should be operated within the specified electrical and environmental limits.

Protective relays, although generally of robust construction, require careful treatment prior to installation and a wise selection of site. By observing a few simple rules the possibility of premature failure is eliminated and a high degree of performance can be expected.

Care must be taken when unpacking and installing the relays so that none of the parts are damaged or their settings altered and must at all times be handled by skilled persons only.

Relays should be examined for any wedges, clamps, or rubber bands necessary to secure moving parts to prevent damage during transit and these should be removed after installation and before commissioning.

The relay should be mounted on the circuit breaker or panel to allow the operator the best access to the relay functions.

Equipment Connections

Personnel undertaking installation, commissioning or servicing work on this equipment should be aware of the correct working procedures to ensure safety. The product documentation should be consulted before installing, commissioning or servicing the equipment.

Terminals exposed during installation, commissioning and maintenance may present hazardous voltage unless the equipment is electrically isolated.

If there is unlocked access to the rear of the equipment, care should be taken by all personnel to avoid electric shock or energy hazards.

Voltage and current connections should be made using insulated crimp terminations to ensure that terminal block insulation requirements are maintained for safety. To ensure that wires are correctly terminated, the correct crimp terminal and tool for the wire size should be used.

Before energising the equipment it must be earthed using the protective earth terminal, or the appropriate termination of the supply plug in the case of plug connected equipment. Omitting or disconnecting the equipment earth may cause a safety hazard.

The recommended minimum earth wire size is 2.5mm², unless otherwise stated in the technical data section of the product documentation.

Before energising the equipment, the following should be checked:

- 1. Voltage rating and polarity;
- 2. Protective fuse rating;
- 3. Integrity of earth connection (where applicable)

Decommissioning & Disposal

Decommissioning: The auxiliary supply circuit in the relay may include capacitors across the

supply or to earth. To avoid electric shock or energy hazards, after completely isolating the supplies to the relay (both poles of any dc supply), the capacitors should be safely discharged via the external terminals prior to

decommissioning.

Disposal: It is recommended that incineration and disposal to water courses is avoided.

The product should be disposed of in a safe manner.

Maintenance

Mechanical Inspection

Inspect the relay for obvious signs of damage or ingress of moisture or other contamination.

Inspect the relay for signs of any overheating or burn marks which may have been caused by overvoltage surge or transient conditions on the power supply.

Test Intervals

The maintenance tests required will largely depend upon experience and site conditions, but as a general rule it is recommended that the following inspection and tests are performed every twelve months.

- Mechanical Inspection
- Check of Connections
- ♦ Insulation Resistance Test
- Flash test and trip check