

## AM 400 relay - Mixed load, 4 contacts Datasheet



## Description

The AM 400 relay has 3 silver double make / double break C/O contacts (form Z ) and one gold bifurcated $\mathrm{C} / \mathrm{O}$ contact.

The plug-in design offers secure locking feature for maximum ease of maintenance (no wires need to be disconnected or other hardware removed for relay inspection or replacement). The resistance to impact and vibration is conform to standards in force for Railway Transported Equipment. Positive mechanical keying of relay to socket is built into relay and socket during manufacture and terminal identifications are clearly marked on identification plate that is permanently attached to the relay..

The AM 400 relays is pluggable in the following sockets: EA 102 A, EA 102 AF, EA 103 AF, EA 104 A, EA 104 AF, EA 105 AF, EA 112 AF.

## Application

The AM 400 relay is designed for both power levels and low level signals are being switched for general purpose heavy duty applications such as lighting, pumps and fans, as an option a Weld-no-transfer design for safety critical applications such as door control, emergency brake failure, interlocking traction and breaking with a gold bifurcated contact for dry circuit signal information.

## Features

- Instantaneous relay
- Plug-in design with secure locking feature for maximum ease of maintenance
- 3 double make / double break C/O silver contacts (form Z)
- 1 gold bifurcated C/O contact
- Contact life (mechanical) of 100 million cycles
- $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ operating temperature
- Contacts cross pollution barrier
- Optional weld no transfer function for silver contacts


## Benefits

- Proven reliable in heavy duty application
- 3 silver contacts power contact and 1 gold bifurcated dry circuit contact
- Long life cycle
- Easy to maintain and replace
- Low life cycle cost
- No maintenance


## Railway compliancy

- NF F 62-002 Rolling stock -

Instantaneous relays contacts and sockets

- NF F16-101/102 Fire behaviour -

Railway rolling stock

## AM 400 relay

Technical specifications

$\square$
$\qquad$

## Functional and connection diagrams



## AM 400 relay <br> Technical specifications

## Coil data - DC versions

| Keying | Unom (VDC) | Uoperating <br> (VDC) | Pnom (W) | Uhold (VDC) | Udrop-out <br> $($ (VDC) | R coil ( $\Omega)^{(1)}$ | L/R (ms) ${ }^{(2)}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGZ | 24 | $16 / 33$ | 3 | 13.5 | 2.5 | 185 | 30 |
| FLZ | 36 | $25 / 45$ | 3 | 21 | 3.5 | 430 | 30 |
| DGZ | 48 | $33 / 60$ | 3 | 28.5 | 4.5 | 750 | 30 |
| BGZ | 72 | $48 / 90$ | 3 | 40.5 | 6.5 | 1700 | 30 |
| SVB | 110 | $75 / 138$ | 3 | 62 | 10 | 4000 | 30 |
| EGZ | 125 | $88 / 156$ | 3 | 73 | 12 | 5700 | 30 |

(1) Coil resistance tol.: $\pm 8 \%$ at $20^{\circ} \mathrm{C}$
(2) Valid for closed relay.

## Coil data - AC versions

| Keying | Unom (VAC) | Uoperating <br> (VAC) | Pnom (VA) | Uhold (VAC) | Udrop-out <br> $(\mathrm{VAC})$ | R coil ( $\Omega)^{(1)}$ | L/R (ms) ${ }^{(2)}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SZA | 115 | $80 / 140$ | 3 | 65 | 10 | 4000 | 30 |
| CGZ | 220 | $176 / 242$ | 3 | 129 | 21 | 15000 | 30 |

(1) Coil resistance tol.: $\pm 8 \%$ at $20^{\circ} \mathrm{C}$
(2) Valid for closed relay.

## Contact data - silver contacts

| Nominal current | 8 A resistive |
| :---: | :---: |
| Nominal breaking capacity and life | 1 A at 72 VDC L/R:0 ms Electrical life: $5 \times 10^{6} \mathrm{op}$. <br> 350 mA at 72 VDC L/R: 30 ms Electrical life: $2.5 \times 10^{6} \mathrm{op}$. <br> 1 A at 220 VAC 50 Hz $\cos \varnothing=1$ Electrical life: $2.5 \times 10^{6} \mathrm{op}$. <br> Lamp filament circuit: 120 W at 72 VDC Electrical life: $5 \times 10^{5} \mathrm{op}$.  |
| Contact overload withstand | At 24 VDC: 100 A at $\mathrm{L} / \mathrm{R}=0$ for 10 ms ( 10 operations at the rate of 1 operation per minute) |
| Contact closure time | Pick-up time N/O $<40 \mathrm{~ms}$ Drop-out* time N/C < 15 ms |
| Contact opening time | Pick-up time N/C $<35 \mathrm{~ms}$ Drop-out* time N/O $<6 \mathrm{~ms}$ |
| Minimum contact continuity | 20 mA at 24 VDC |
| Number of contacts | 3 double make / double break contacts (form Z) |
| Contact material | Hard silver overlay laminated to copper |
| Contact resistance initial | $10 \mathrm{~m} \Omega$ max at 5 A |
| end of life | $40 \mathrm{~m} \Omega$ max at 5 A |

## AM 400 relay <br> Technical specifications

## Contact data - gold bifurcated contact

| Number of contacts | $1 \mathrm{C} / \mathrm{O}$ double break contact |  |
| :---: | :---: | :---: |
| Contact configuration | Stationary contacts | Bifurcated 2 contacts finger design |
|  | Movable contacts | Solid blade |
| Contact resistance | $\leq 20 \mathrm{~m} \Omega$ at 5 A (carry only) |  |
| Maximum contact ratings | Operating | 20 mA maximum at 72 VDC |
|  | Carry only (no make and break) | 5 A maximum at 5 VDC |
| Minimum current ratings | 1 mA at 5 VDC |  |
| Electrical life | $2 \times 10^{6}$ operations |  |
| Contact material | Stationary contacts | Solid gold alloy |
|  | Movable contacts | Gold over hard silver overlay |
|  |  | laminated to copper |

## Contact design



## Electrical characteristics

| Dielectric strength | $2000 \mathrm{VAC}, 1$ min between contacts <br> $2600 \mathrm{VAC}, 1 \mathrm{~min}$ between contacts, coil and frame <br> Insulation resistance |
| :--- | :--- |
| $\geq 1000 \mathrm{M} \Omega$ at 500 VDC |  |

A Wabtec Company

## AM 400 relay <br> Technical specifications

## Mechanical \& environmental characteristics

$\left.\begin{array}{|l|l|}\hline \text { Vibration } & \begin{array}{l}\text { NF F 62-002 The tests are conducted in the X, Y, Z planes at frequency } \\ \text { between } 10 \text { \& } 150 \text { cycles (sinusoidal) at } 2 \mathrm{~g}\end{array} \\ \text { Shock } \\ \text { NF F 62-002 Tests are applied in both directions in the X, Y \& Z planes. Then } \\ \text { successive shocks are administered consisting of the positive component of } \\ \text { sinusoidal with a value of } 30 \mathrm{~g}, 18 \mathrm{~ms}\end{array}\right\}$

## Dimensions (mm)



Used
with locking brackets


Used with wire locking spring

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 1

AC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for resistive load (Power Factor = 1).

| Curve | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| VAC | 220 | 125 | 48 | 24 |


(for silver contacts)

A Wabtec Company

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 2

## DC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for inductive load:
$\mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$ continuous current

-     -         -             - L/R=40 ms continuous current
* By connecting 2 contacts in series, DC current breaking capacity increases by 50 \%

| Curves | $1-3$ | $2-4$ | $5-6$ | $7-8$ |
| :--- | :--- | :--- | :---: | :---: |
| VDC | 220 | 125 | 48 | 24 |


(for silver contacts)

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 3

DC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for resistive load ( $\mathrm{L} / \mathrm{R}=0$ ). Continuous current.

* By connecting 2 contacts in series, DC current breaking capacity increases by 50 \%

| Curve | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| VDC | 220 | 125 | 48 | 24 |


(for silver contacts)

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 4

## Maximum contact breaking capacity versus voltage for a given L/R.

Rate of contacts opening and closing $=600$ operations per hour.
Curves shown for resistive load ( $\mathrm{L} / \mathrm{R}=0$ ) and inductive loads. Continuous current.
Life expectancy: 2 Millions of Cycles

| Curve | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~L} / \mathrm{R}=$ | 0 ms | 15 ms | 20 ms | 40 ms | 60 ms | 100 ms |


(for silver contacts)

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 5

Maximum power interruption versus load time constant (L/R) for a given voltage.
Curves shown for resistive loads. I = P/V.

| Curve | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| VDC | 220 | 125 | 72 | 48 | 24 |


(for silver contacts)

## AM 400 relay <br> Technical specifications

## Dynamic relay selection curve No 6

## AC Current breaking capacity versus life expectancy in millions of cycles.

Rate of contacts opening and closing $=1200$ operations per hour.
Values shown for inductive loads -
$-\cos \varnothing=0.7$
$---\cos \varnothing=0.5$
$--\cos \varnothing=0.3$


[^0]
## AM 400 relay <br> Mounting possiblities / sockets


EA 102 A

EA 103 AF

EA 104 A

EA 112 AF

## Panel/flush mounting

| EA 102 A | Locking bracket (905843), rear connection, double Faston 5 mm |
| :--- | :--- |
| EA 102 AF | Wire locking spring (926853), rear connection, single Faston 5 mm |
| EA 104 A | Locking bracket (905843), rear connection, single Faston $5 \times 0.8 \mathrm{~mm}$ |
| EA 104 AF | Wire locking spring (926853), rear connection, single Faston 5 x 0.8 mm |
| EA 112 AF | Wire locking spring (926853), rear connection, crimp contact |

Surface/wall mounting

| EA 103 AF* | Wire locking spring (926853), front connection, M3 screw 6.5 mm ring terminals <br> $\left(2,5 \mathrm{~mm}^{2}\right)$ <br> WA $105 \mathrm{AF}^{*}$ |
| :--- | :--- |

${ }^{*}$ Mounting possibility on 35 mm rail EN 50022 by adding suffix D to the part number (see socket datasheet)

Note: Keying of relay to socket can be specified by adding the keying letters in the part number. See all details in the related socket datasheet.

## AM 400 relay <br> Spare parts

Spare parts - order part numbers


## AM 400 relay Instructions

## Installation

Install socket and connect wiring correctly according identification to terminals. Plug relay into socket. Reverse installation into socket not possible due to mechanical blocking by snap-lock.
Don't reverse polarity of coil connection. Relays can be mounted (tightly) next to each other and in any attitude.
Warning! Never use silicon near by relays

## Operation

Before operating always apply voltage to coil to check correct operation.
Long term storage may corrode the silver on the relay pins. Just by plugging the relay into the socket, the female bifurcated receivers will automatically clean the corrosion on the pins and guarantee a good connection.
Do not use the relay in places with flammable gas as the arc generated from switching could ignite gasses.

## Maintenance

Correct operation of relay can easily be checked as transparent cover gives good visibility on the moving contacts. When the relay doesn't seem to operate correct, please check presence of coil voltage. Use a multimeter. If LED is used, coil presence should be indicated. If coil voltage is present, but the relay doesn't work, a short circuit of suppression diode is possible (The coil connection was reversed). If relay doesn't work after inspection, please replace relay unit by a similar model. Send defective relay back to manufacturer. Normal wear and tear excluded.

## AM 400 relay Ordering scheme

Configuration:

AM 400

1. Relay model

2. Keying

3. Coil
OVP

4. Weld
no transfer

5. LED
ind.

This example represents a AM 40024 AGZ S C V F.
Description: AM 400 series relay, Unom: 24 VDC, Keying AGZ, transil coil protection, weld no transfer, LED indicator, relay cover for wire locking spring

1. Relay model

AM 400

2 \& 3. Nominal voltage and keying

| AGZ | 24 VDC |
| :--- | :--- |
| FLZ | 36 VDC |
| DGZ | 48 VDC |
| BGZ | 72 VDC |
| SVB | 110 VDC |
| EGZ | 125 VDC |
|  |  |
| SZA | 115 VAC |
| CGZ | 220 VAC |

4. Coil overvoltage protection

| - | No coil protection |
| :--- | :--- |
| $\mathbf{P}$ | Avalanche diode coil protection |
| S | Transil coil protection (only 400 type) |
| Note: no | protection for AC coil versions |

5. Weld no transfer option

| - | Regular double-break contacts |
| :--- | :--- |
| C | Weld no transfer |

6. LED coil voltage indicator

| - | No LED |
| :--- | :--- |
| $\mathbf{V}$ | LED voltage indicator |

7. Relay cover type

| - | Relay cover with lock pins |
| :--- | :--- |
| F | Relay cover for wire locking spring |



www.morssmitt.com


## Mors Smitt France SAS

Tour Rosny 2, Avenue du Général de Gaulle,
F - 93118 Rosny-sous-Bois Cedex, FRANCE
T +33 (0)1 4812 1440, F +33 (0) 148559001
E sales.msf@wabtec.com

## Mors Smitt Asia Ltd.

29/F., Fun Towers, 35 Hung To Road
Kwun Tong, Kowloon, HONG KONG SAR
$\mathrm{T}+85223435555, \mathrm{~F}+85223436555$
E sales.msa@wabtec.com

## Mors Smitt B.V.

Vrieslantlaan 6, 3526 AA Utrecht,
NETHERLANDS
T +31 (0)30 288 1311, F +31 (0)30 2898816
E sales.msbv@wabtec.com

## Mors Smitt Technologies Inc.

1010 Johnson Drive,
Buffalo Grove, IL 60089-6918, USA
T +1 847777 6497, F + 18475202222
E salesmst@wabtec.com

## Mors Smitt UK Ltd.

Graycar Business Park, Barton under Needwood,
Burton on Trent, Staffordshire, DE13 8EN, UK
$\mathrm{T}+44$ (0) $1283722650 \mathrm{~F}+44$ (0) 1283722651
E sales.msuk@wabtec.com

## RMS Mors Smitt

6 Anzed Court, Mulgrave,
VIC 3170, AUSTRALIA
$\mathrm{T}+61$ (0)3 $85441200 \mathrm{~F}+61$ (0)3 85441201
E sales.rms@wabtec.com


[^0]:    (for silver contacts)

