ER circuit breaker - Hydraulic magnetic, Datasheet railway, high current and voltage

Description
Hydraulic magnetic circuit breaker for high current and high voltage railway applications to protect electronic equipment and components against unintended high currents. Optional with integrated auxiliary contacts to monitor the circuit.

The trip point is always at maximum allowable current, independent of ambient temperature. With unique arc chute design which results in high interrupting capacities. Up to 6 poles which all break its electronic circuits when 1 breaker trips, for optimal protection of the system. Wide range of currents and options available.

Application
To be used in every high current or high voltage application where electrical systems, circuits or components must be protected against too high currents. This situation can occur, when under strained or heavy use a motor or other load-generating component within the equipment will draw additional current from the power source. High currents cause the wires or components to overheat and ultimately burn up.

A circuit protection device should be employed at any point where a conductor size changes. Many electronic circuits and components like transformers have a lower overload withstand threshold level than conductors such as wires and cables. These components require circuit protection devices featuring very fast overload sensing and opening capabilities.
The ER circuit breaker can be used in all Railway applications where protection against overload and short circuit is necessary, for example HVAC systems, (door) control systems, braking systems, passenger information systems, etc.

ER circuit breakers Technical specifications

Electrical characteristics

ER circuit breakers
 Technical specifications

General characteristics

Number of poles	$1,2,3,4,5$ or 6 poles
Terminals	Stud / screw / box wire connector, see circuit \& terminal diagrams
Auxiliary contacts	Faston or solder type, see circuit \& terminal diagrams
Mounting	A $7.62 \mathrm{~mm}(3 ")$ minimum spacing must be provided between the circuit breaker arc venting area on back connected ER circuit breakers and grounded obstructions. ER circuit breakers must be mounted on a vertical surface.
Connectors, box type	Front connected ER circuit breakers are supplied with box type pressure connectors that accept copper or aluminium conductors as follow: $1 / 0-14$ copper, 1/0-12 aluminium
Body	Blue colour
Actuator handle	Several colours with "I O" and "On-off" legends Series trip, shunt trip, relay trip \& switch only 252 g per pole
Weight	(average, depending on configuration) 26.5 mm
Width per pole	Half shell - BMC 605 Handle - Valox 420SEO UL94V0 Terminals - Brass with acid tin plate
Material	

Mechanical characteristics

Endurance
Trip free mechanism
Trip indication:
10.000 ‘ON-OFF’ operations @ 6 per minute with rated current $\&$ voltage. Trips on short-circuit or on overload, even when the actuator is forcibly held in the ON position.
When manually moving the operating handle from OFF to ON position, an auxiliary switch is actuated. When an overload or a short circuit causes the circuit breaker to trip, the operating handle moves positively to the OFF position and the auxiliary switch is actuated.

ER circuit breakers
 Technical specifications

Environmental characteristics

Environmental	EN $50125-1$ and IEC 60077-1
Operating temperature	$-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Vibration	IEC 61373 , Category 1, class B body mounted
Shock	IEC 61373 , Category 1, class A \& B body mounted
Thermal shock	MIL-STD-202G, method 107D, test condition A
Salt mist	IEC 60068-2-52 severity level 3
Damp heat Fire \& smoke Protection Moisture resistance / humidity	IEC 60068-2-30 test method Db variant 1
NFF 16101, NFF 16102	
IEC 60529, IP40 when a panel is mounted over the circuit breaker	
MIL-STD-202G, method 106 D	

Resistance, impedance

```
Resistance, impedance values from Line to Load terminals (Values based on series trip circuit breaker)
Ohms
```



```
\begin{tabular}{|c|c|}
\hline Current (amps) & Tolerance (\%) \\
\hline \(0.10-5.0\) & \(\pm 15 \%\) \\
\(5.1-20.0\) & \(\pm 25 \%\) \\
\(20.1-120.0\) & \(\pm 35 \%\) \\
\hline
\end{tabular}
Ampere rating
```


ER circuit breakers
 Technical specifications

Inrush pulse tolerance

Table of time delay values

	PERCENT OF RATED CURRENT										
	Delay	100\%	125\%	135\%	150\%	200\%	400\%	600\%	800\%	1000\%	1200\%
	10	No Trip	May Trip	---	. $001-.038$. $001-.032$. $001-.021$. $001-.019$. $001-.019$. 001 -. 019	. $001-.019$
	12, 72	No Trip	. $600-7.00$	---	. $330-2.00$. $150-.800$. $033-.160$. $016-.071$. $010-.048$. 008 - . 040	. 008 - . 040
	14, 74	No Trip	11.0-110	---	6.00-45.0	3.00-18.0	280-3.50	. $013-1.50$. $010-.130$. 009 -. 090	. $009-.080$
TRIP	16, 76	No Trip	100-800	---	50.0-360	20.0-120	3.00-25.0	. $020-11.0$. $010-.700$. 009 - . 230	. $009-.200$
TIME	20	No Trip	May Trip	---	. $001-.040$. $001-.031$. $001-.020$. $001-.020$. $001-.020$. 001 - . 020	. $001-.020$
(SECONDS)	22, 62	No Trip	. $800-5.00$	---	. $400-2.30$. $150-.900$. $034-.170$. $020-.080$. $012-.051$. 010 - . 040	. $009-.040$
	24, 64	No Trip	7.20-90.0	---	4.40-35.0	2.00-15.0	500-3.50	. $025-1.60$. $012-.330$. 010 - . 070	. $009-.050$
	26, 66	No Trip	50.0-500	---	32.0-250	14.0-120	2.50-24.0	. $320-7.00$. $0125-3.10$. $011-.130$. $010-.055$

Notes:

- Delay curves $12,14,22,24,62,64,72,74$: Breakers to hold 100% and must trip at 125% of rated current and greater within the time limit shown in this curve
- Delay curves 10,20 : Breakers to hold 100% and must trip at 150% of rated current and greater within the time limit shown in this curve
- All curves: Curve data shown represents breaker response at ambient temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ with no preloading. Breakers are mounted in standard wall-mount position. Delay times may vary at different temperature, the trip current rating remains unchanged
- The minimum inrush pulse tolerance handling capability is 12 times the rated current on standard delays and 25 times the rated current on high inrush delays. These values are based on a $60 \mathrm{~Hz} 1 / 2$ cycle, 8.33 ms pulse. High inrush delays should be specified for applications with high initial surge currents of short duration such as switching power supplies, highly capacitive loads and transformer loads

ER circuit breakers
 Time delay values

AC + High inrush AC

6

ER circuit breakers
 Time delay values

DC + High inrush DC

ER circuit breakers Time delay values

AC/DC

8

ER circuit breakers
 Circuits \& terminal diagrams

ER circuit breakers
 Circuits \& terminal diagrams

Series trip w/aux. switch (5 terminals) Shunt trip (3 terminals)

Notes:

1. All dimensions are in inches [millimeters]
2. Tolerance ± 0.020 [0.51] unless otherwise specified
3. $0-50$ A: $10-32 \&$ M 5 Studs $0.625 \pm 0.062 / 15.88 \pm 1.574$ long
$51-120$ A: $1 / 4-20 \&$ M6 Studs $0.750 \pm 0.062 / 19.05 \pm 1.574$ long

ER circuit breakers
 Form \& fit drawings

Box type wire connectors
Bus type screw terminals

Multipole identification scheme
Auxiliary switch terminals
barriers (on back connected breakers only)

Maximum tightening torque values

| TABLE A | |
| :--- | :---: | :---: |
| TIGHTENING TORQUE SPECIFICATIONS | |

Remark:
When studs are used 2 nuts are supplied.
The inner nut is fastened in the factory with
max. 12-15 in-lbs (1.4-1.6 Nm)

[^0]
ER circuit breakers
 Form \& fit drawings

ER circuit breakers
 Form \& fit drawings

ER circuit breakers
 Ordering scheme

1 Series
ER
2 Poles ${ }^{1}$

1	One	4	Four
2	Two	5	Five
3	Three	6	Six

3 Current rating (amperes)

210	0.100	512	1.250	485	8.500	630	30.000
215	0.150	415	1.500	490	9.000	635	35.000
220	0.200	517	1.750	495	9.500	640	40.000
225	0.250	420	2.000	610	10.000	650	50.000
230	0.300	522	2.250	611	11.000	660	60.000
235	0.500	425	2.500	711	11.500	670	70.000
240	0.400	527	2.750	612	12.000	680	80.000
245	0.450	430	3.000	712	12.500	690	90.000
250	0.500	435	3.500	613	13.000	810	100.000
260	0.600	440	4.000	614	14.000	812^{14}	120.000
265	0.650	445	4.500	615	15.000	912^{2}	125.000
270	0.700	450	5.000	616	16.000		
275	0.750	455	5.500	617	17.000		
280	0.800	460	6.000	618	18.000		
285	0.850	465	6.500	620	20.000		
290	0.900	470	7.000	622	22.000		
295	0.950	475	7.500	624	24.000		
410	1.000	480	8.000	625	25.000		
Or voltage coil (nominal rated voltage)							

4 Frequency \& delay

03^{4}	DC, $50 / 60 \mathrm{~Hz}$, switch only
10	DC instantaneous
12	DC short
14	DC medium
16	DC long
20	$50 / 60 \mathrm{~Hz}$ instantaneous
22	$50 / 60 \mathrm{~Hz}$ short
24	$50 / 60 \mathrm{~Hz}$ medium
26	$50 / 60 \mathrm{~Hz}$ long
30	DC, $50 / 60 \mathrm{~Hz}$, short
34	DC, $50 / 60 \mathrm{~Hz}$, medium
36	DC, $50 / 60 \mathrm{~Hz}$, long
62	$50 / 60 \mathrm{~Hz}$ short, hi-inrush
64	$50 / 60 \mathrm{~Hz}$ medium, hi-inrush
66	$50 / 60 \mathrm{~Hz}$ long, hi-inrush
72	DC, short, hi-inrush
74	DC, medium, hi-inrush
76	DC, long, hi-inrush

5 Circuit ${ }^{5}$
A ${ }^{4} \quad$ Switch only (no coil)
B Series trip (current)
C Series trip (voltage)
D Shunt trip (current)
6 Actuator
A Handle, one per pole

7 Actuator colour \& legend

Actuator colour	I-O	ON-OFF	Dual	Legend colour
White	A	B	1	Black
Black	C	D	2	White
Red	F	G	3	White
Green	H	J	4	White
Blue	K	L	5	White
Yellow	M	N	6	Black
Grey	P	Q	7	Black
Orange	R	S	8	Black

8 Auxiliary switch ${ }^{6}$

0	Without auxiliary switch
2	SPDT, 0.110 QC terminals
3	SPDT, 0.139 solder lug
4	SPDT, 0.110 QC terminals (gold contacts)

ER circuit breakers
 Ordering scheme

9 Terminal

| Back connected (front mounted only) | | |
| :--- | :--- | :---: |\quad Max. rating

Terminals $120 \mathrm{~A} / 125 \mathrm{~A}$ on request

10 Mounting \& barriers ${ }^{7,10}$

Back connected (Front mounted only)		
Mounting inserts		
A	6-32	
B	ISO M3	
Front connected (Back mounted only) ${ }^{11}$		
	Back (Opti	Front mou
C	Short	6-32
D	Short	ISO M3
E	Long	6-32
F	Long	ISO M3

11 Maximum application rating

```
B
L
F14 277 VAC, 100 A
H
J 12,14 415 VAC, 100 A
T 125 VDC/240 VAC, 100 A
W[12,14}125 VDC/415 VAC, 100 A
G}\mp@subsup{\textrm{G}}{}{12,14}600 VAC,100 
```

12 Agency approval
1^{13} TUV certified, UL recognized
A No agency approvals (configuration not tested by external agency)

Notes

1. - Standard multi-pole units identical poles except when specifying auxiliary switch (see note 4)

- For mixed ratings, consult Mors Smitt
- 4-6 poles: max. 100 A

2. 125 A rating available as a switch only, rated 125 VDC maximum application rating
3. Voltage trip coils are not rated for continuous duty. Available only with frequency \& delay codes $10 \& 20$
4. Switch only construction: 30 A or less select current rating code $630 ; 31-70 \mathrm{~A}$, select current rating code 670 ; 71-100 A, select current rating code 810; 101-125 A, select current rating code 912.
5. Switch only \& series trip construction available with either front or back connected terminals. Shunt construction available with back connected terminals, (terminal codes $1 \& 2$) only
6. Auxiliary switch available on switch only and series trip units. On multi-pole breakers, one auxiliary switch is supplied mounted in the extreme right pole (rear view). Back mounted units require special mounting provisions when auxiliary switch is specified
7. An anti-flash over barrier is supplied between poles on multi-pole units with 10-32 (terminal code 1) or 1/4-20 (code 2), M5 (code A), and M6 (code B) terminals
8. Box wire connector will accept \#14 through 0 AWG copper wire or \#12 through 0 AWG aluminum wire
9. Box wire connector with pressure plate for stranded wire
10. Separate barrier available which can be positioned between ER breakers during assembly
11. Back mounted breakers can also be front mounted by utilizing the proper front panel mounting inserts normally supplied. However, terminal connections must be made prior to mounting.
12. $415 \mathrm{VAC}, 480 \mathrm{VAC}, 600 \mathrm{VAC}$ ratings require 3 or 4 pole break $3 \varnothing$ and 2 pole break $1 \varnothing$
13. TUV certified: not for switch only circuit and only for actuator legend 'I-O' and dual legend UL recognized: for most applications, not for all Special applications without approvals: agency approval code A
14. Only with agency approval code A (no approvals)

www.morssmitt.com

Mors Smitt France SAS

Tour Rosny 2, Avenue du Général de Gaulle, F - 93118 Rosny-sous-Bois Cedex, FRANCE
$\mathrm{T}+33$ (0) 14812 1440, F +33 (0) 148559001
E sales.msf@wabtec.com

Mors Smitt Asia Ltd.

29/F., Fun Towers, 35 Hung To Road Kwun Tong, Kowloon, HONG KONG SAR
T +852 2343 5555, F +852 23436555
E sales.msa@wabtec.com

Mors Smitt B.V.

Vrieslantlaan 6, 3526 AA Utrecht,
NETHERLANDS
T +31 (0)30 2881311
E sales.msbv@wabtec.com

Mors Smitt Technologies Inc.

1010 Johnson Drive,
Buffalo Grove, IL 60089-6918, USA
$\mathrm{T}+1847777$ 6497, F + 18475202222
E salesmst@wabtec.com

Mors Smitt UK Ltd.

Graycar Business Park, Barton under Needwood, Burton on Trent, Staffordshire, DE13 8EN, UK
$\mathrm{T}+44$ (0) $1283722650 \mathrm{~F}+44$ (0) 1283722651
E sales.msuk@wabtec.com

RMS Mors Smitt

6 Anzed Court, Mulgrave,
VIC 3170, AUSTRALIA
$\mathrm{T}+61(0) 385441200 \mathrm{~F}+61(0) 385441201$
E sales.rms@wabtec.com

[^1]
[^0]: Notes:

 1. All dimensions are in inches [millimeters]
 2. Tolerance ± 0.020 [0.51$]$ unless otherwise specified
 3. $0-50$ A: 10 - $32 \&$ M 5 Studs $0.625 \pm 0.062 / 15.88 \pm 1.574$ long

 51-120 A: $1 / 4-20 \&$ M6 Studs $0.750 \pm 0.062 / 19.05 \pm 1.574$ long

[^1]: (c) Copyright 2017

 All rights reserved. Nothing from this edition may be multiplied, or made public in any form or manner, either electronically, mechanically, by photocopying, recording, or in any manner, without prior written consent from Mors Smitt. This also applies to accompanying drawings and diagrams. Due to a policy of continuous development Mors Smitt reserves the right to alter the equipment specification and description outlined in this datasheet without prior notice and no part of this publication shall be deemed to be part of any contract for the equipment unless specifically referred to as an inclusion within such contract. Mors Smitt does not warrant that any of the information contained herein is complete, accurate, free from potential errors, or fit for any particular purpose. Mors Smitt does not accept any responsibility arising from any party's use of the information in this document.

