

MSA1000 - Hall effect transducer

Datasheet

Description

The transducers are based on compensating the magnetic field by a closed loop system. The MSA1000 is used for the measurement of AC and DC currents with high galvanic isolation between the current carrying conductor and output of the sensor. The current transducer can handle pulsed currents. The MSA1000 transducers are especially designed for secure measuring of a permanent current up to 1000 A. The current measuring range covers a bandwidth from -2000 A to 2000 A.

Application

The Mors Smitt transducers are used to measure high currents in rolling stock and track side applications. High currents are converted linear to low power signals.

Features

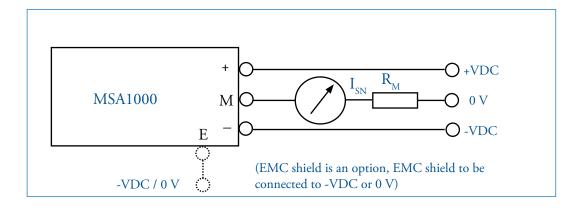
- Specially designed for railway applications
- Closed loop (compensated)
- High dielectric strength
- · Precise linearity
- · Precise accuracy
- High dynamic response
- No foucault losses in the magnetic circuit
- EMC shielding (optional)
- Wide temperature range, -50°C..+85°C

Benefits

- Proven reliable
- Long term availability
- Low life cycle cost
- No maintenance

Railway compliancy

- EN 50155 Railway application electronic equipment used in rolling stock
- IEC 61373 Rolling stock equipment -Shock and vibration test
- NF F16-101/102 Fire behaviour Railway rolling stock
- IEC 60068-2-11 Environmental testing: Salt mist - Test ka - 96 hours


MSA1000 Technical specifications

Connection diagram

Technical specifications

Electrical characteristics

Primary nominal r.m.s. current	I_{PN}	1000 A
Primary current measuring range	$I_{_{ m P}}$	± 2000 A
Secondary nominal r.m.s. current	I_{SN}	200 mA @ K _N = 5000 / 250 mA @ K _N = 1:4000*
Conversion ratio	K_{N}	1:4000 / 1:5000 *
Secondary coil resistance @ 70 °C	R_s	$27 \Omega @ K_N = 1:4000 / 35 \Omega @ K_N = 1:5000 *$
Auxiliary supply voltage	V_{N}	± 15 VDC 24 VDC
Current consumption	I_{c}	33 mA + I _s @ 24 VDC
Dielectric strength	$V_{_{\mathrm{D}}}$	6 kV / 10 kV / 12 kV(50 Hz - 1 min) *
Output measuring resistance	R_{M}	$R_{M} = ((V_{NC} - dV) / I_{SN}) - R_{S}$ (see explanation below)

^{*} See ordering scheme

Legend:	Example:	
dV = Fixed value	dV = 1.6 V	
V_N = Nominal auxiliary supply	$V_N = 15 V$	
V_{NC} = Lower value of the auxiliary supply	$V_{NC} = 14.25 V$	
$(V_N - 5\% \text{ typical})$	$I_{PN} = 1000 A$	
R _S = Secondary coil resistance at 70 °C	$K_N = 5000 \text{ turns}$	
I _{SN} = Secondary current	$R_s = 35 \Omega$	
	$I_{SN} = I_{PN} / K_{N}$	
	$I_{SN} = 1000 / 5000 = 0.2 A$	
	$R_{M} = ((14.25 - 1.6) / 0.2) - 35) =$	28.25 Ω

Accuracy / dynamic performance

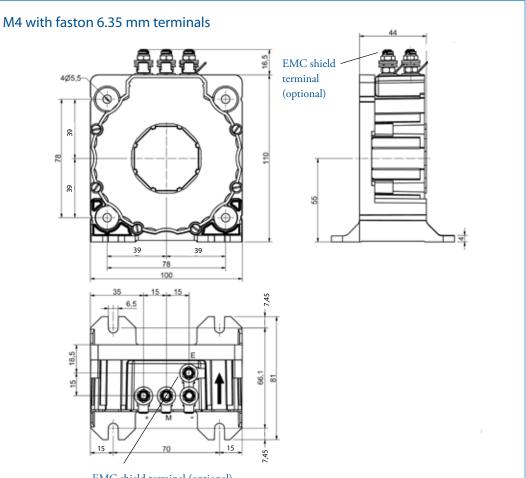
Overall accuracy @ I _{PN} - T _A =25 °C	X_{G}	± 0.5% *
Linearity	$\mathbf{\epsilon}_{_{\mathrm{L}}}$	< 0.1%
Offset current @ $I_p=0$ - $T_A=25$ °C	I_{o}	\pm 0.5 mA max.
Resp. time @ 90% of I_{PN} and di/dt 100 A/ μ s	T_R	< 1 μs
Di / dt accuracy followed	di/dt	> 50 A / μs
Frequency bandwidth (-3 dB)	f	DC to 100 kHz

^{*} See ordering scheme

General characteristics

Operating temperature	T_{A}	-40 °C+85 °C or -50 °C+85 °C *
Storing temperature	T_s	-40 °C+85 °C or -50 °C+85 °C *
		Storing temperature will follow operating temperature
Weight	m	700 g ± 10 % (without busbar, holding frame or
		mounting frame))
		1208 g ± 10 % (with primary busbar 185 x 40 x 8 mm)
Connection		M4 with Faston 6.35 mm terminals -
		M5 terminals typical - Faston 6.35 mm - Flying leads -
		Trim trio SMS 6 PDH1 *

^{*} See ordering scheme



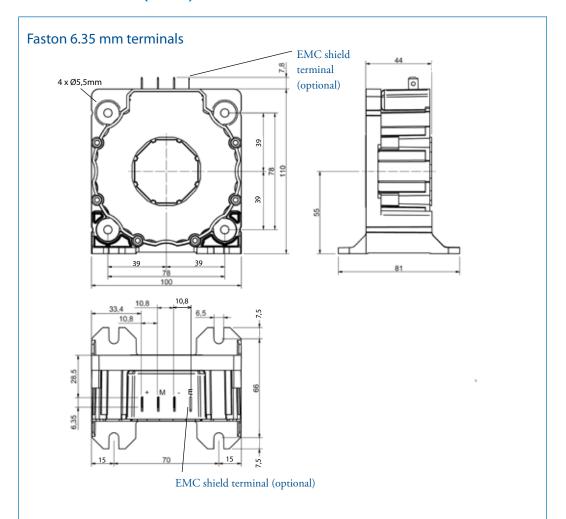
Technical specifications

Dimensions (mm)

EMC shield terminal (optional)

Notes:

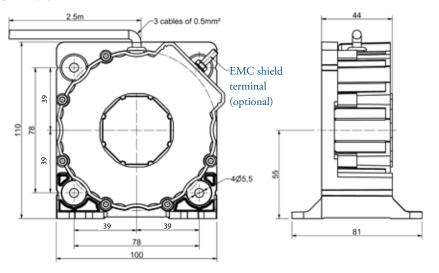
- 1. Connection: 3 x M4 terminals, maximum torque value 2.2 Nm A 4th M4 with Faston 6.35 mm terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
- 2. Fastening: 4 slots Ø 6.5 mm in the mounting frame base for regular mounting and 4 slots Ø 5.5 mm for vertical mounting frame section for panel mounting
- 3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 4. Temperature of the primary conductor should not exceed $\,100~^{\circ}\text{C}$
- 5. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length ± 1 mm and on positions where the value is mentioned in the drawing
- 6. Drawing is according the European projection method

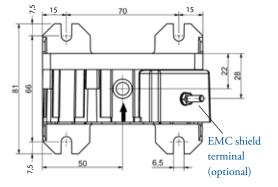


Technical specifications

Dimensions (mm)

- Connection: 3 x Faston 6.35 mm terminals, maximum torque value 2.2 Nm. A 4th Faston 6.35 mm terminal is placed when EMC shield option is selected
- Fastening: 4 slots Ø 6.5 mm in the mounting frame base for regular mounting and 4 slots Ø 5.5 mm in the vertical mounting frame section for panel mounting
- To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- Temperature of the primary conductor should not exceed 100 °C
- General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing
- Drawing is according to the European projection method





Technical specifications

Dimensions (mm)

Flying lead terminals

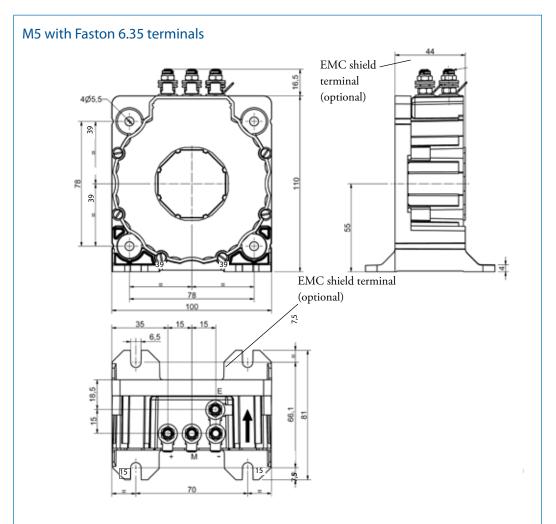
Notes:

- 1. Cable Ø 6 mm,
 - Red = +24 V

Green = 0 V

Black = -24 V

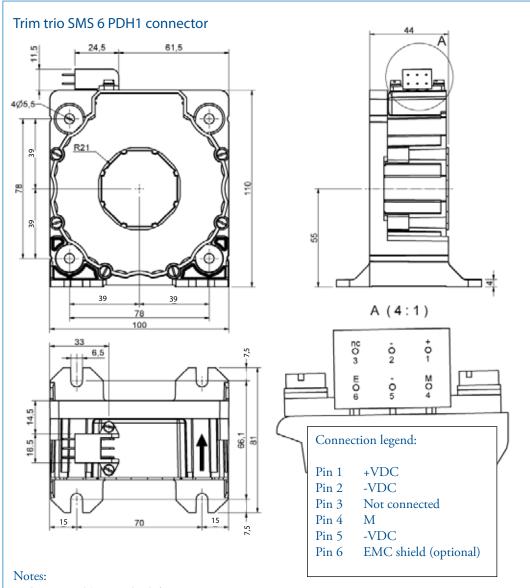
- 2. An aditional M4 terminal is placed when the EMC shield option is selected (maximum torque value $2.2\ Nm$)
- 3. Fastening: 4 slots \emptyset 6.5 mm in the mounting frame base for regular mounting and 4 slots \emptyset 5.5 mm for vertical mounting frame section for panel mounting
- 4. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 5. Temperature of the primary conductor should not exceed $\,100~^{\circ}\text{C}$
- 6. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing
- 7. Drawing is according the European projection method



Technical specifications

Dimensions (mm)

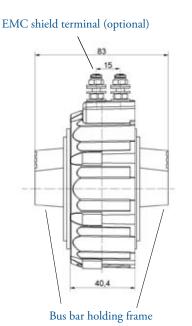
- 1. Connection: 3 x M5 with Faston 6.35 mm terminals, maximum torque value 2.2 Nm A 4th M5 with Faston 6.35 mm terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
- 2. Fastening: 4 slots \emptyset 6.5 mm in the mounting frame base for regular mounting and 4 slots \emptyset 5.5 mm for vertical mounting frame section for panel mounting
- 3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 4. Temperature of the primary conductor should not exceed 100 °C
- 5. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length ± 1 mm and on positions where the value is mentioned in the drawing
- 6. Drawing is according the European projection method

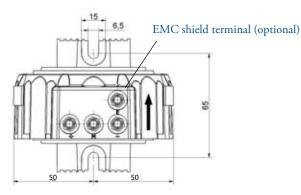


Technical specifications

Dimensions (mm)

- 1. Connection Trim trio SMS 6 PDH1
- 2. Fastening: 4 slots Ø 6.5 mm in the mounting frame base for regular mounting and 4 slots Ø 5.5 mm for vertical mounting frame section for panel mounting
- 3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 4. Temperature of the primary conductor should not exceed 100 °C
- 5. General tolerances are \pm 0.5 mm, with exception of the input/output positions \pm 1 mm, length \pm 1 mm and on positions where the value is mentioned in the drawing
- 6. Drawing is according the European projection method





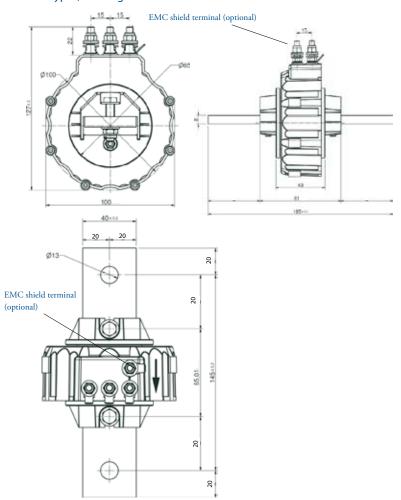
Technical specifications

Dimensions (mm)

Bus bar frame

Notes:

- 1. Connection: 3 x M5 terminals, maximum torque value 2.2 Nm A 4th M5 terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
- 2. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 3. Temperature of the primary conductor should not exceed 100 $^{\circ}\text{C}$
- 4. General tolerances are ± 0.5 mm, with exception of the input/output positions ± 1 mm length ± 1 mm and on positions where the value is mentioned in the drawing
- 5. Drawing is according the European projection method
- 6. Installation with a primary busbar: the sensor must be mechanically fixed only by the bar but not both bar and housing at the same time (this type of fixing would lead to mechanical stress that could lead to breaking of the sensor)



Technical specifications

Dimensions (mm)

Primary bus bar

(applicable for all types, drawing shows the combination M5 with Faston 6.35 mm terminals)

Notes:

- Connection: 3 x M5 terminals, maximum torque value 2.2 Nm
 A 4th M4 with Faston 6.35 mm terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
- 2. Fastening: 2 slots Ø 13 mm
- 3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
- 4. Temperature of the primary conductor should not exceed 100 $^{\circ}\text{C}$
- 5. General tolerances are ± 0.5 mm, with exception of the input/output positions ± 1 mm length ± 1 mm and on positions where the value is mentioned in the drawing
- 6. Drawing is according the European projection method
- 7. Installation with a primary busbar: the sensor must be mechanically fixed only by the bar but not both bar and housing at the same time (this type of fixing would lead to mechanical stress that could lead to breaking of the sensor)

MSA1000 Ordering scheme

Configuration:

S **MSA1000** 5. 6. 8.

This example represents a MSA1000-S-4-D-3-2-4-Y.

Description: MSA1000 transducer, with hole for the primary, conversion ratio 1:4000, M5 terminals, dielectric strength 10 kV, 0.5% accuracy, -50 °C...+85 °C temperature range, with EMC shield.

1. Transducer model

MSA1000

2. Mounting

With hole for the primary T With primary busbar F With bus bar holding frame

3. Conversion ratio

4. Secondary connection

A	M4 terminals with Faston 6.35 mm
В	6.35 mm Faston
C	Flying lead terminals
D	M5 terminals
E	M5 terminals with Faston 6.35 mm
I	Trim trio SMS 6 PDH1
D E	M5 terminals M5 terminals with Faston 6.35 mm

5. Dielectric strength

2	6 kV	
3	10 kV	
4	12 kV	

6. Accuracy

2	0.5 %	

7. Temperature range

8. EMC shield

N	Without EMC shield	
Y	With EMC shield	

Mors Smitt France SAS

Tour Rosny 2, Avenue du Général de Gaulle,

F - 93118 Rosny-sous-Bois Cedex, FRANCE

T +33 (0)1 4812 1440, F +33 (0)1 4855 9001

E sales@msrelais.com

Mors Smitt Asia Ltd.

807, Billion Trade Centre, 31 Hung To Road

Kwun Tong, Kowloon, HONG KONG SAR

T +852 2343 5555, F +852 2343 6555

E info@morssmitt.hk

Mors Smitt B.V.

Vrieslantlaan 6, 3526 AA Utrecht,

NETHERLANDS

 $T + \! 31 \ (0) \\ 30 \ 288 \ 1311, \\ F + \! 31 \ (0) \\ 30 \ 289 \ 8816$

E sales@nieaf-smitt.nl

Mors Smitt Technologies Inc.

420 Sackett Point Road

North Haven, CT 06473, USA

T +1 (203) 287 8858, F +1 (888) 287 8852

E mstechnologies@msrelais.com

Mors Smitt UK Ltd.

Doulton Road, Cradley Heath

West Midlands, B64 5QB, UK

T +44 (0)1384 567 755, F +44 (0)1384 567 710

E info@morssmitt.co.uk

