MSA2000 - Hall effect transducer
 Datasheet

Features

- Specially designed for railway applications
- Closed loop (compensated)
- High dielectric strength
- Precise linearity
- Precise accuracy
- High dynamic response
- No foucault losses in the magnetic circuit
- EMC shielding (optional)
- Wide temperature range, $-50^{\circ} \mathrm{C} .+85^{\circ} \mathrm{C}$

Benefits

- Proven reliable
- Long term availability
- Low life cycle cost
- No maintenance

Railway compliancy

- EN 50155 - Railway application electronic equipment used in rolling stock
- IEC 61373 - Rolling stock equipment Shock and vibration test
- NF F16-101/102 - Fire behaviour Railway rolling stock
- IEC 60068-2-11 - Environmental testing: Salt mist - Test ka - 96 hours

MSA2000
 Technical specifications

Connection diagram

2

MSA2000

Technical specifications

Electrical characteristics

Primary nominal r.m.s. current	I_{PN}	2000 A
Primary current measuring range	I_{p}	$\pm 3000 \mathrm{~A}$
Secondary nominal r.m.s. current	I_{SN}	$500 \mathrm{~mA} @ \mathrm{~K}_{\mathrm{N}}=1: 4000 / 400 \mathrm{~mA} @ \mathrm{~K}_{\mathrm{N}}=1: 5000^{*}$
Conversion ratio	K_{N}	$1: 4000 / 1: 5000^{*}$
Secondary coil resistance @ $70{ }^{\circ} \mathrm{C}$	R_{S}	$21 \Omega @ \mathrm{~K}_{\mathrm{N}}=1: 4000 / 27.6 \Omega @ \mathrm{~K}_{\mathrm{N}}=1: 50000^{*}$
Auxiliary supply voltage	V_{N}	$\pm 15 \mathrm{VDC} . .24 \mathrm{VDC}$
Current consumption	I_{C}	$33 \mathrm{~mA}+\mathrm{I}_{\mathrm{S}} @ 24 \mathrm{VDC}\left(\mathrm{I}_{\mathrm{S}}:\right.$ Secondary current $)$
Dielectric strength	V_{D}	$6 \mathrm{kV} / 10 \mathrm{kV} / 12 \mathrm{kV}(50 \mathrm{~Hz}-1 \text { min })^{*}$
Output measuring resistance	R_{M}	$\mathrm{R}_{\mathrm{M}}=\left(\left(\mathrm{V}_{\mathrm{NC}}-\mathrm{dV}\right) / \mathrm{I}_{\mathrm{SN}}\right)-\mathrm{R}_{\mathrm{S}}$ (see explanation below)

* See ordering scheme

Legend:
$\mathrm{dV}=$ Fixed value
$\mathrm{V}_{\mathrm{N}}=$ Nominal auxiliary supply
$\mathrm{V}_{\mathrm{NC}}=$ Lower value of the auxiliary supply ($\mathrm{V}_{\mathrm{N}}-5 \%$ typical)
$\mathrm{R}_{\mathrm{S}}=$ Secondary coil resistance at $70^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{SN}}=$ Secondary current

Example:

dV	$=1.6 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{N}}$	$=15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NC}}$	$=14.25 \mathrm{~V}$
I_{PN}	$=2000 \mathrm{~A}$
$\mathrm{~K}_{\mathrm{N}}$	$=5000$ turns
R_{S}	$=27.6 \Omega$
I_{SN}	$=\mathrm{I}_{\mathrm{PN}} / \mathrm{K}_{\mathrm{N}}$
I_{SN}	$=2000 / 5000=0.4 \mathrm{~A}$
R_{M}	$=((14.25-1.6) / 0.4)-27.6)=4.025 \Omega$

Accuracy / dynamic performance

Overall accuracy @ $\mathrm{I}_{\mathrm{PN}}-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	X_{G}	$\pm 0.5 \% / \pm 1 \% *$
Linearity	ε_{L}	$<0.1 \%$
Offset current @ $\mathrm{I}_{\mathrm{P}}=0-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{0}	$\pm 0.7 \mathrm{~mA}$ max.
Thermal drift of I_{0} between $\left(-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{0 \mathrm{~T}}$	$\pm 1 \mathrm{~mA}$ max.
Resp. time @ 90\% of I_{PN} and di/dt $100 \mathrm{~A} / \mu \mathrm{s}$	T_{R}	$<1 \mu \mathrm{~s}$
Di / dt accuracy followed	$\mathrm{di} / \mathrm{dt}$	$>50 \mathrm{~A} / \mu \mathrm{s}$
Frequency bandwidth $(-3 \mathrm{~dB})$	f	DC to 100 kHz

* See ordering scheme

General characteristics

Operating temperature	T_{A}	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ or $-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} *$
Storing temperature	T_{S}	$-40{ }^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ or $-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} *$
		Storing temperature will follow operating temperature
Weight		$1400 \mathrm{~g} \pm 10 \%$ (without busbar, holding frame or mounting frame) Connection
		$3600 \mathrm{~g} \pm 10 \%$ (with primary busbar $210 \times 60 \mathrm{x} 20 \mathrm{~mm})$ M 5 terminals typical - Trim trio SMS $6 \mathrm{PDH1} *$

[^0]
MSA2000
 Technical specifications

Dimensions (mm)

Notes:

1. Connection: $3 \times \mathrm{M} 5$ terminals, maximum torque value 2.2 Nm

A 4th M5 terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
2. Fastening: 4 slots $\emptyset 6.5 \mathrm{~mm}$ in the mounting frame base for regular mounting and 4 slots $\varnothing 5.5 \mathrm{~mm}$ for vertical mounting frame section for panel mounting
3. To obtain a positive output on the terminal marked " M ", primary current must flow in the direction of the arrow (conventional flow)
4. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
5. General tolerances are $\pm 0.5 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$, length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing

MSA2000
 Technical specifications

Dimensions (mm)

Trim trio SMS 6 PDH1 connector

Connection legend:

Pin $1+V D C$
Pin $2-V D C$
Pin 3 not connected
Pin 4 M
Pin 5 -VDC
Pin 6 EMC shield (optional)

Notes:

1. Connection Trim trio SMS 6 PDH1
2. Fastening: 4 slots $\varnothing 6.5 \mathrm{~mm}$ in the mounting frame base for regular mounting and 4 slots $\varnothing 5.5 \mathrm{~mm}$ for vertical mounting frame section for panel mounting
3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
4. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
5. General tolerances are $\pm 0.5 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$, length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing

MSA2000
 Technical specifications

Dimensions (mm)

Primary bus bar
(applicable for all types, drawing shows the combination M5 terminals)

Notes:

1. Connection: $3 x \mathrm{M} 5$ terminals, maximum torque value 2.2 Nm . A 4 th M 5 terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
2. Fastening: 2 slots $\varnothing 13 \mathrm{~mm}$
3. To obtain a positive output on the terminal marked " M ", primary current must flow in the direction of the arrow (conventional flow)
4. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
5. General tolerances are $\pm 0.3 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$ length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing
6. Material of bus bar: plated copper
7. Installation with a primary bus bar; the sensor must be mechanically fixed only by the bar not both bar and housing at the same time (this type of fixing would lead to mechanical stress that could lead to breaking of the sensor)

MSA2000
 Technical specifications

Dimensions (mm)

Bus bar holding frame
(applicable for all types, drawing shows the combination M5 terminals)

Notes:

1. Connection: $3 \times \mathrm{M} 5$ terminals, maximum torque value 2.2 Nm . A 4th M5 terminal is placed when the EMC shield option is selected (maximum torque value 2.2 Nm)
2. Fastening: 2 slots $\varnothing 13 \mathrm{~mm}$
3. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
4. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
5. General tolerances are $\pm 0.3 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$ length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing
6. Material of bus bar: plated copper
7. Installation with a primary bus bar; the sensor must be mechanically fixed only by the bar not both bar and housing at the same time (this type of fixing would lead to mechanical stress that could lead to breaking of the sensor)

MSA2000
 Notes

MSA2000
 Ordering scheme

Configuration:

1.
4.
5.
7

This example represents a MSA2000-S-4-D-3-2-4-Y.
Description: MSA2000 transducer, with hole for the primary, conversion ratio 1:4000, M5 terminals, dielectric strength $10 \mathrm{kV}, 0.5 \%$ accuracy, $-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ temperature range, with EMC shield.

1. Transducer model

MSA2000
2. Mounting

S	With hole for the primary
T	With primary busbar
F	With bus bar holding frame

3. Conversion ratio

$\mathbf{4}$	$1: 4000$
$\mathbf{5}$	$1: 5000$

4. Secondary connection
$\begin{array}{ll}\text { D } & \text { M5 terminals } \\ \text { I } & \text { Trim trio SMS } 6 \text { PDH1 }\end{array}$
5. Dielectric strength

$\mathbf{2}$	6 kV
$\mathbf{3}$	10 kV
$\mathbf{4}$	12 kV

6. Accuracy

$\mathbf{1}$	$\mathbf{1} \%$
$\mathbf{2}$	0.5%

7. Temperature range

3	$-40{ }^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
4	$-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

8. EMC shield

\mathbf{N}	Without EMC shield
\mathbf{Y}	With EMC shield

Mors Smitt France SAS
Tour Rosny 2, Avenue du Général de Gaulle,
F - 93118 Rosny-sous-Bois Cedex, FRANCE
T +33 (0) 14812 1440, F +33 (0) 148559001
E sales@msrelais.com

Mors Smitt Asia Ltd.
\# 807, Billion Trade Centre, 31 Hung To Road
Kwun Tong, Kowloon, HONG KONG SAR
T +852 2343 5555, F +852 23436555
E info@morssmitt.hk

Mors Smitt B.V.
Vrieslantlaan 6, 3526 AA Utrecht,
NETHERLANDS
T+31 (0)30288 1311, F +31 (0)30 2898816
E sales@nieaf-smitt.nl

Mors Smitt Technologies Inc. 420 Sackett Point Road

North Haven, CT 06473, USA
T +1 (203) 287 8858, F +1 (888) 2878852
E mstechnologies@msrelais.com

Mors Smitt UK Ltd.
Doulton Road, Cradley Heath
West Midlands, B64 5QB, UK
$\mathrm{T}+44$ (0) 1384567 755, F + 44 (0) 1384567710
E info@morssmitt.co.uk

[^0]: * See ordering scheme

