

MSA300-Hall effect transducer
 Datasheet

Description

The transducers are based on compensating the magnetic field by a closed loop system. The MSA300 is used for the measurement of AC and DC currents with high galvanic isolation between the current carrying conductor and output of the sensor. The current transducer can handle pulsed currents. The MSA300 transducers are especially designed for secure measuring of a permanent current up to 300 A . The current measuring range covers a bandwidth from -500 A to 500 A .

Application

The Mors Smitt transducers are used to measure high currents in rolling stock and track side applications. High currents are converted linear to low power signals.

Features

- Specially designed for railway applications
- Closed loop (compensated)
- High dielectric strength
- Precise linearity
- Precise accuracy
- High dynamic response
- No foucault losses in the magnetic circuit
- EMC shielding (optional)
- Wide temperature range, $-50^{\circ} \mathrm{C} .+85^{\circ} \mathrm{C}$

Benefits

- Proven reliable
- Long term availability
- Low life cycle cost
- No maintenance

Railway compliancy

- EN 50155 - Railway application electronic equipment used in rolling stock
- IEC 61373 - Rolling stock equipment Shock and vibration test
- NF F16-101/102 - Fire behaviour Railway rolling stock
- IEC 60068-2-11 - Environmental testing: Salt mist - Test ka - 96 hours

MSA300
 Technical specifications

Connection diagram

MSA300
 Technical specifications

Electrical characteristics

Primary nominal r.m.s. current	I_{PN}	300 A
Primary current measuring range	I_{P}	$\pm 500 \mathrm{~A}$
Secondary nominal r.m.s. current	I_{SN}	$100 \mathrm{~mA} / 150 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{SN}}=\mathrm{I}_{\mathrm{PN}} / \mathrm{K}_{\mathrm{N}}\right)^{*}$
Conversion ratio	K_{N}	$1: 2000 / 1: 3000^{*}$
Secondary coil resistance @ $70{ }^{\circ} \mathrm{C}$	R_{S}	$25 \Omega @ \mathrm{~K}_{\mathrm{N}}=1: 2000 / 56 \Omega @ \mathrm{~K}_{\mathrm{N}}=1: 3000^{*}$
Auxiliary supply voltage	V_{N}	$\pm 12 \mathrm{VDC}$ to $\pm 18 \mathrm{VDC} \pm 5 \%$
Current consumption	I_{C}	$\pm 24 \mathrm{~mA}+\mathrm{I}_{\mathrm{S}} @ 18 \mathrm{VDC}\left(\mathrm{I}_{\mathrm{S}}=\right.$ secondary current $)$
Dielectric strength	V_{D}	$3 \mathrm{kV} / 6 \mathrm{kV}(50 \mathrm{~Hz}-1 \mathrm{~min})^{*}$
Output measuring resistance	R_{M}	$\mathrm{R}_{\mathrm{M}}=\left(\left(\mathrm{V}_{\mathrm{NC}}-\mathrm{dV}\right) / \mathrm{I}_{\mathrm{SN}}\right)-\mathrm{R}_{\mathrm{S}}$ (see explanation below)

* See ordering scheme

Legend:
$\mathrm{dV}=$ Fixed value
$\mathrm{V}_{\mathrm{N}}=$ Nominal auxiliary supply
$\mathrm{V}_{\mathrm{NC}}=$ Lower value of the auxiliary supply ($\mathrm{V}_{\mathrm{N}}-5 \%$ typical)
$\mathrm{R}_{\mathrm{S}}=$ Secondary coil resistance at $70^{\circ} \mathrm{C}$
$I_{\text {SN }}=$ Secondary current

Example:

dV	$=1.6 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{N}}$	$=15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NC}}$	$=14.25 \mathrm{~V}$
I_{PN}	$=300 \mathrm{~A}$
$\mathrm{~K}_{\mathrm{N}}$	$=2000$ turns
R_{S}	$=25 \Omega$
I_{SN}	$=\mathrm{I}_{\mathrm{PN}} / \mathrm{K}_{\mathrm{N}}$
I_{SN}	$=300 / 2000=0.15 \mathrm{~A}$
R_{M}	$=((14.25-1.6) / 0.15)-25)=59.33 \Omega$

Accuracy / dynamic performance

Overall accuracy @ $\mathrm{I}_{\mathrm{PN}}-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	X_{G}	$\pm 0.5 \% / \pm 1 \%{ }^{*}$
Linearity	ε_{L}	$<0.1 \%$
Offset current @ $\mathrm{I}_{\mathrm{P}}=0-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{0}	$\pm 0.3 \mathrm{~mA}$ max.
Thermal drift of I_{0} between $\left(-40^{\circ} \mathrm{C} \ldots .+70^{\circ} \mathrm{C}\right)$	I_{OT}	$\pm 0.5 \mathrm{~mA}$ max.
Resp. time @ 90% of I_{PN} and di/dt $100 \mathrm{~A} / \mu \mathrm{s}$	T_{R}	$<1 \mu \mathrm{~s}$
Di / dt accuracy followed	di $^{2} \mathrm{dt}$	$>50 \mathrm{~A} / \mu \mathrm{s}$
Frequency bandwidth $(-3 \mathrm{~dB})$	f	DC to 100 KHz

* See ordering scheme

General characteristics

Operating temperature *	T_{A}	$-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Storing temperature *	T_{S}	$-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
	m	Storing temperature will follow operating temperature $140 \mathrm{~g} \pm 10 \%$ (without busbar) $240 \mathrm{~g} \pm 10 \%$ (with busbar $125 \times 20 \times 5 \mathrm{~mm}$) Weight Connection *

[^0]
MSA300
 Technical specifications

Dimensions (mm)

MSA300
 Technical specifications

Dimensions (mm)

Notes:

1. Connection: 3 x Faston 6.35 mm terminals
2. Fastening: 2 slots of $\varnothing 5.5 \mathrm{~mm}$ for horizontal mounting and 4 slots of $\varnothing 4.3 \mathrm{~mm}$ for wall mounting
3. To obtain a positive output on the terminal marked " M ", primary current must flow in the direction of the arrow (conventional flow)
4. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
5. General tolerances are $\pm 0.3 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$, length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing

MSA300
 Technical specifications

Dimensions (mm)

MSA300
 Technical specifications

Dimensions (mm)

Mounting with primary bus bar
(Applicable for all terminal types, drawing shows the combination with faston 6.35 mm terminals)

Notes:

1. Connection: 3 x faston 6.35 mm terminals
2. Busbar connections 2 slots of $\emptyset 8.5 \mathrm{~mm}$
3. Fastening: 2 slots of $\varnothing 5.5 \mathrm{~mm}$ for horizontal mounting and 4 slots of $\emptyset 4.3 \mathrm{~mm}$ for wall mounting
4. To obtain a positive output on the terminal marked "M", primary current must flow in the direction of the arrow (conventional flow)
5. Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$
6. General tolerances are $\pm 0.3 \mathrm{~mm}$, with exception of the input/output positions $\pm 1 \mathrm{~mm}$, length $\pm 1 \mathrm{~mm}$ and on positions where the value is mentioned in the drawing
7. The copper busbar weights $90 \mathrm{~g} \pm 10 \%$
8. Installation with a primary busbar: the sensor must be mechanically fixed only by the bar but not both bar and housing at the same time (this type of fixing would lead to mechanical stress that could lead to breaking of the sensor)

MSA300
 Notes

MSA300

Ordering scheme

Configuration:

This example represents a MSA300-S-2-A-1-2-4-Y.
Description: MSA300 transducer, with hole for the primary, conversion ratio 1:2000, M4 terminals, dielectric strength $3 \mathrm{kV}, 0.5 \%$ accuracy, $-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ temperature range, with EMC shield.

1. Transducer model

MSA300

2. Mounting

S With hole for the primary
T With primary busbar

3. Conversion ratio

$\mathbf{2}$	$1: 2000$
$\mathbf{3}$	$1: 3000$

4. Secondary connection

A	M4 terminals
B	6.35 mm faston
C	Flying lead terminals
A	B

5. Dielectric strength

$\mathbf{1}$	3 kV
$\mathbf{2}$	6 kV

6. Accuracy

$\mathbf{1}$	1%
$\mathbf{2}$	0.5%

7. Temperature range
```
4-50 C ... }+8\mp@subsup{5}{}{\circ}\textrm{C
```

8. EMC shield *

N Without EMC shield
 Y With EMC shield

* EMC shield is only applicable on M4 terminals, EMC shield in combination with other terminals on request
-而

www.morssmitt.com

Tour Rosny 2, Avenue du Général de Gaulle,
F - 93118 Rosny-sous-Bois Cedex, FRANCE
T + 33 (0) 14812 1440, F +33 (0) 148559001
E sales@msrelais.com

Mors Smitt Asia Ltd.
\# 807, Billion Trade Centre, 31 Hung To Road
Kwun Tong, Kowloon, HONG KONG SAR
$\mathrm{T}+8522343$ 5555, F + 85223436555
E info@morssmitt.hk

Mors Smitt B.V.
Vrieslantlaan 6, 3526 AA Utrecht,

NETHERLANDS

$\mathrm{T}+31$ (0)30 288 1311, F +31 (0)30 2898816
E sales@nieaf-smitt.nl

Mors Smitt Technologies Inc.
420 Sackett Point Road
North Haven, CT 06473, USA
$\mathrm{T}+1$ (203) $2878858, \mathrm{~F}+1$ (888) 2878852
E mstechnologies@msrelais.com

Mors Smitt UK Ltd.
Doulton Road, Cradley Heath
West Midlands, B64 5QB, UK
$\mathrm{T}+44$ (0) $1384567755, \mathrm{~F}+44$ (0) 1384567710
E info@morssmitt.co.uk

[^0]: * See ordering scheme

