

T2CBBU 400 relay - Asymetrical flasher,Datasheet4 contacts

Description

The T2CBBU 400 is an asymetrical flasher relay with 4 double make / double break C/O contacts (form Z). The first period is adjusted 0.1 s...1.5 s and second period 1 s...15 s. Time delay is achieved by combination of relay dip switch The access to dip switch is available by removing time delay cover. This feature prohibits frivolous field time delay setting. Timing can be also be factory set on order.

The plug-in design offers secure locking feature for maximum ease of maintenance (no wires need to be disconnected or other hardware removed for relay inspection or replacement). The resistance to impact and vibration is conform to standards in force for Railway Transported Equipment.

Positive mechanical keying of relay to socket is built into relay and socket during manufacture and terminal identifications are clearly marked on identification plate that is permanently attached to the relay

The T2CBBU 400 relay is pluggable in the following sockets: EA 102 B, EA 102 BF, EA 103 BF, EA 104 B, EA 104 BF, EA 105 BF, EA 112 BF.

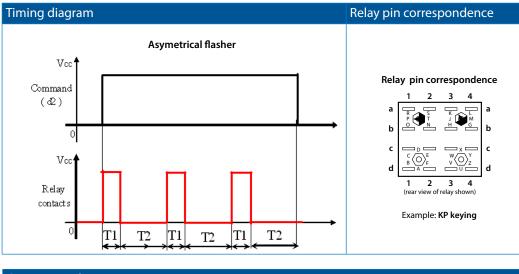
Application

The T2CBBU 400 timing relay is designed for heavy duty applications with a programmable timing function used for exemple in lighting..

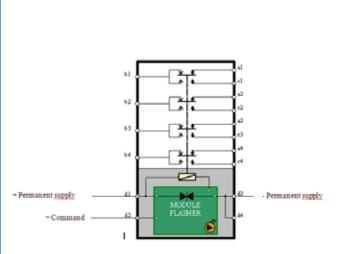
Features

- 2 flashing periods programmable
- 1st period 0.1 s...1.5 s and 2nd period 1 s...15 s
- Time delay is achieved by comination of relay dip switch
- Status LED indicator
- Plug-in design with secure locking feature for maximum ease of maintenance
- 4 double make / double break C/O contacts (form Z), 12 A
- Weld no transfer contacts standard
- Contact life (mechanical) of 100 million cycles
- -40 °C...+85 °C operating temperature

Benefits


- Proven reliable in heavy duty application
- Weld no transfer
- Long life cycle
- Accurate timing selection finger safe
- Easy to maintain and replace
- Low life cycle cost
- No maintenance

Railway compliancy


- NF F 62-002 Rolling stock -Instantaneous relays contacts and sockets
- NF F 16-101/102 Fire behaviour -Railway rolling stock
- EN 50155 Railway application -Electronic equipment used on rolling stock
- IEC 61373 Railway application shock and vibration tests

Functional and connection diagrams

Connection diagram

Dip switch setting

example share 17112s T2115s

- DS 1 to 4 period T1
- DS 5 to 8 : period T2

- DS 9 : ON period T1 long, OFF period T1 short
- DS 10: ON finish the cyles after command

 DS 10: ON finish the cyles after command cut off; OFF immediate stop after command cut off

DS no	Range 1 DS 9 = ON		Range 2 DS 9 = OFF	
DS 1	ON	1 s	ON	0.1 S
DS 2	ON	2 s	ON	0.2 s
DS 3	ON	4 s	ON	0.4 s
DS 4	ON	8 s	ON	0.8 s
DS 5	ON	1 s	ON	0.5 s
DS 6	ON	2 s	ON	1 s
DS 7	ON	4 s	ON	2 s
DS 8	ON	8 s	ON	4 s
DS 9	ON	T1 long	OFF	T1 short
DS 10	ON	see above	ON	see above
DS 10	OFF	see above	OFF	see above

Example: The sample dip switch above is set to T1 of 2 s and T2 of 5 s

Timing characteristics

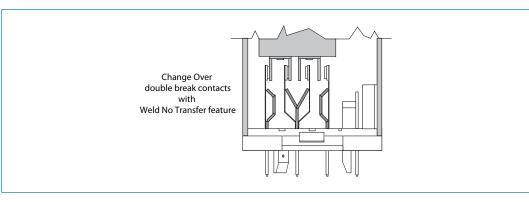
Time function	Asymmetrical flashing (selection by dip switch)
Total time delay range	0.15 s15 s
Time delay adjustment	Fixed after setting the dip switch (access available by removing relay cover)
Adjustment / repeatability accuracy	< 2% (td > 5 s), $< 10%$ (td = 0.25 s up to 5 s) / $< 0.1%$ (td = time delay)
	(Adjustment with power off)

Coil data

Keying	Unom (VDC)	Uoperating (VDC)	Pnom (W)	R coil (Ω) ⁽¹⁾	L/R (ms) ⁽²⁾
GO	12	8 / 16	3	40	30
XX	24	16 / 33	3	185	30
XX	36	25 / 45	3	475	30
XX	48	33 / 60	3	750	30
КО	72	48 / 90	3	1700	30
XX	96	65 / 120	3	3000	30
XX	110	75 / 138	3	4000	30

(1) Coil resistance tol.: \pm 8% at 20 °C (2) Valid for closed relay XX = to be defined

Contact data

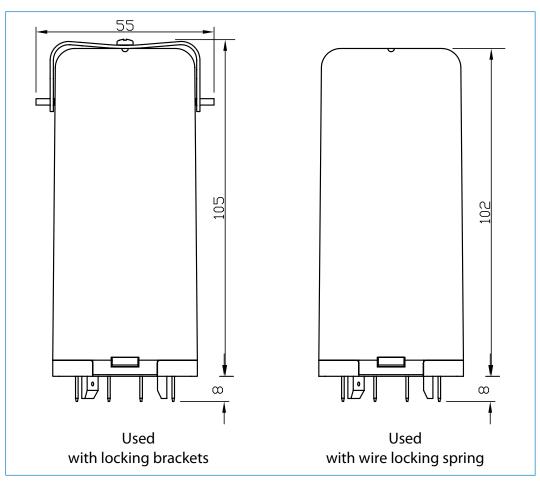

Nominal current	12 A resistive				
Nominal breaking capacity and life	3 A at 72 VDC	L/R : 0 ms	Electrical life: 5 x 10 ⁶ op.		
	1 A at 72 VDC	L/R: 30 ms	Electrical life: 2.5 x 10 ⁶ op.		
	3 A at 220 VAC 50 Hz	cosØ=1	Electrical life: 2.5 x 10 ⁶ op.		
	Lamp filament circuit: 200 W at	t 72 VDC	Electrical life: 5 x 10 ⁵ op.		
Contact overload withstand	At 24 VDC: 200 A at L/R = 0 for 10 ms				
	(10 operations at the rate of 1 operation per minute)				
Contact closure time	Pick-up time N/O < 55 ms	Drop-	out* time N/C < 25 ms		
Contact opening time	Pick-up time N/C < 50 ms	Drop-	out* time N/O < 15 ms		
Minimum contact continuity	20 mA at 24 VDC				
Number of contacts	4 double make / double break contacts (form Z)				
Contact material	Hard silver overlay laminated to copper				
Contact resistance initial	$10 \text{ m}\Omega$ max at 5 A				
end of life	$40 \text{ m}\Omega$ max at 5 A				

Contact design

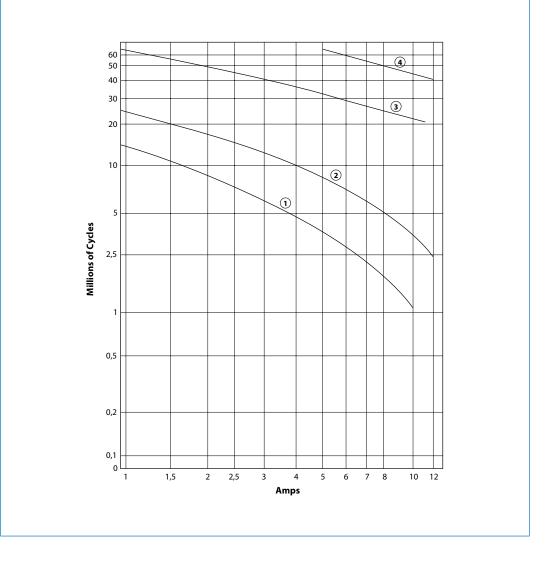
Electrical characteristics

Dielectric strength	2000 VAC, 1 min between contacts	
	2600 VAC, 1 min between contacts, coil and frame	
Insulation resistance	\geq 1000 M Ω at 500 VDC	

Mechanical & environmental characteristics


Vibration	NF F 62-002 The tests are conducted in the X, Y , Z planes at frequency between 10 & 150 cycles (sinusoidal) at 2 g IEC 61373			
Shock	 NF F 62-002 Tests are applied in both directions in the X, Y & Z planes. Then successive shocks are administered consisting of the positive component of sinusoidal with a value of 30 g, 11 ms IEC 61373 Other vibration and shock tests can be performed on request 			
Mechanical life	$> 100 \ge 10^6$ operations			
Weight	450 g (15.8 ounces)			
Temperature	-40 °C+85 °C			
Humidity	93% RH, 40° C for 4 days			
Salt mist	5% NaCl, 35° C for 4 days			
Protection	IP40 (relay on socket)			
Fire & smoke	Materials: Polycarbonate (cover) / polyester melamine (base)			
	Note: These materials have been tested for fire propagation and smoke emission according standards NF F 16-101, NF F 16-102. They have been approved for use on the English/French train channel shuttle			

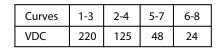
Dimensions (mm)

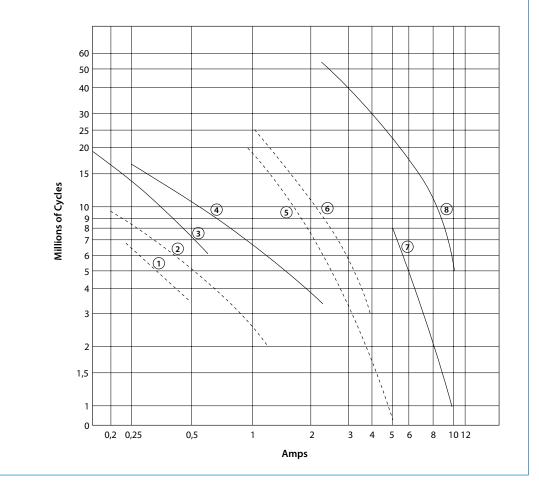


Dynamic relay selection curve No 1

AC Current breaking capacity versus life expectancy in millions of cycles. Rate of contacts opening and closing = 1200 operations per hour. Curves shown for resistive load (Power Factor = 1).

Curve	1	2	3	4
VAC	220	125	48	24

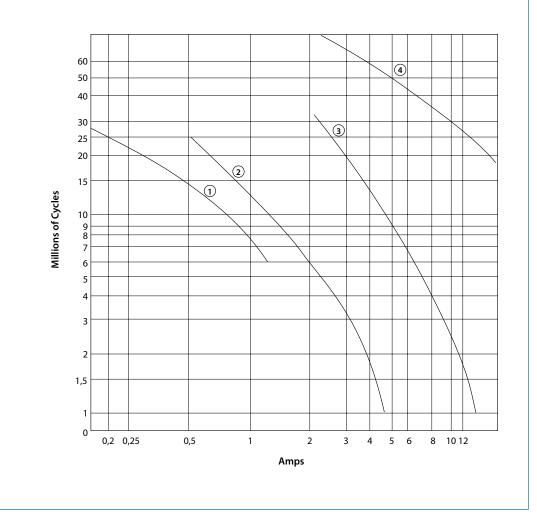

Dynamic relay selection curve No 2


DC Current breaking capacity versus life expectancy in millions of cycles. Rate of contacts opening and closing = 1200 operations per hour.

Curves shown for inductive load -

- L/R= 20 ms continuous current
- ---- L/R= 40 ms continuous current

 * By connecting 2 contacts in series, DC current breaking capacity increases by 50 %

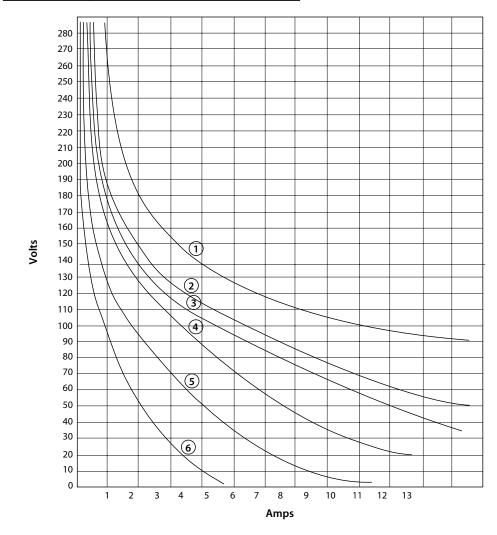


Dynamic relay selection curve No 3

DC Current breaking capacity versus life expectancy in millions of cycles. Rate of contacts opening and closing = 1200 operations per hour. Curves shown for resistive load (L/R = 0). Continuous current.

 * By connecting 2 contacts in series, DC current breaking capacity increases by 50 %

Curve	1	2	3	4
VDC	220	125	48	24

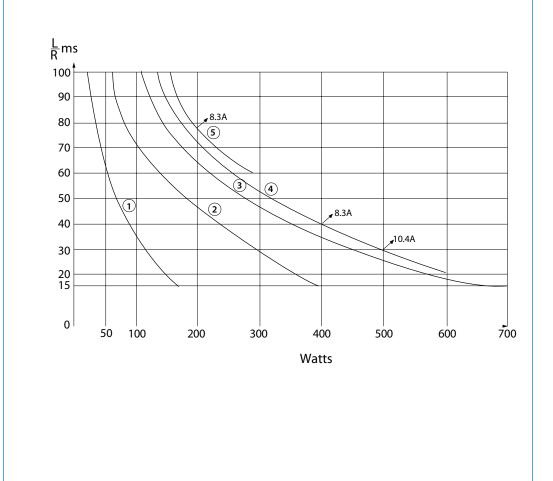


Dynamic relay selection curve No 4

Maximum contact breaking capacity versus voltage for a given L/R. Rate of contacts opening and closing = 600 operations per hour. Curves shown for resistive load (L/R=0) and inductive loads. Continuous current.

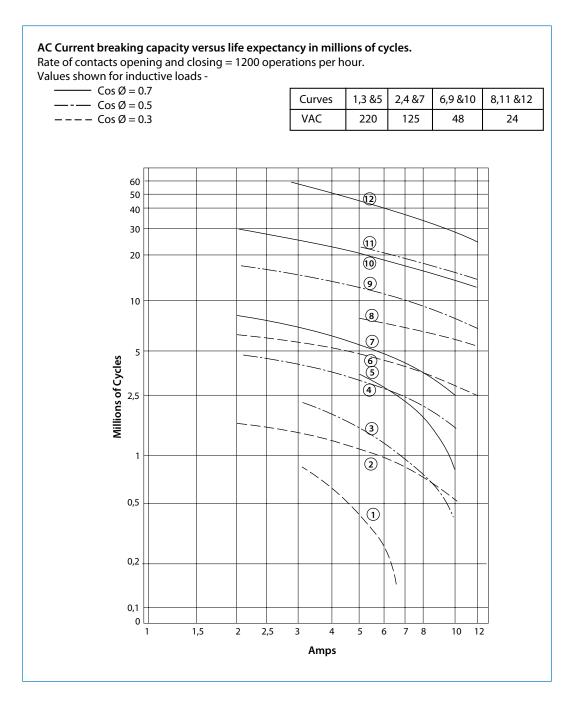
Life expectancy: 2 Millions of Cycles

Curve	1	2	3	4	5	6
L/R=	0ms	15ms	20ms	40ms	60ms	100ms

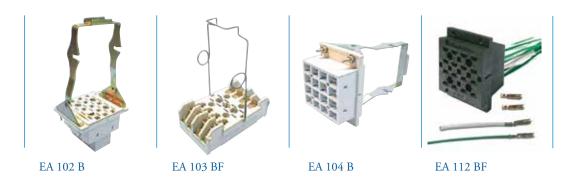


Dynamic relay selection curve No 5

Maximum power interruption versus load time constant (L/R) for a given voltage. Curves shown for resistive loads. I = P/V.


Curve	1	2	3	4	5
VDC	220	125	72	48	24

Dynamic relay selection curve No 6



MORS SMITT www.morssmitt.com

T2CBBU 400 relay Mounting possiblities / sockets

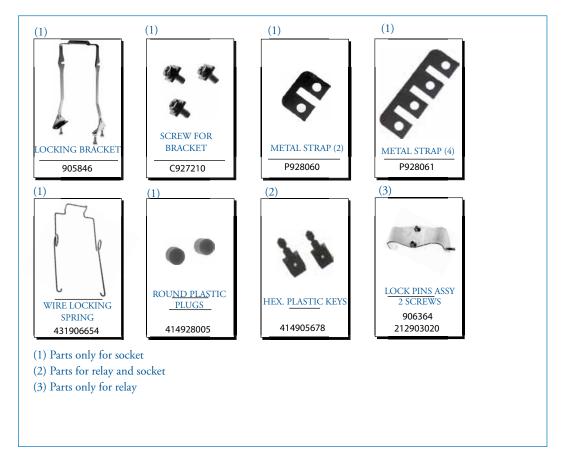
Panel/flush mounting

EA 102 B	Locking bracket (905843), rear connection, double Faston 5 mm
EA 102 BF	Wire locking spring (926853), rear connection, single Faston 5 mm
EA 104 B	Locking bracket (905843), rear connection, single Faston 5 x 0.8 mm
EA 104 BF	Wire locking spring (926853), rear connection, single Faston 5 x 0.8mm
EA 112 BF	Wire locking spring (926853), rear connection, crimp contact

Surface/wall mounting

EA 103 BF*	Wire locking spring (926853), front connection, M3 screw 6.5 mm ring terminals
	$(2,5 \text{ mm}^2)$
EA 105 BF*	Wire locking spring (926853), front connection, single Faston 5 mm

* Mounting possibility on 35 mm rail EN 50022 by adding suffix D to the part number (see socket datasheet)


Note: Keying of relay to socket can be specified by adding the keying letters in the part number. See all details in the related socket datasheet.

T2CBBU 400 relay Spare parts

Spare parts - order part numbers

T2CBBU 400 relay Instructions

Installation

Install socket and connect wiring correctly according identification to terminals. Plug relay into socket. Reverse installation into socket not possible due to mechanical blocking by snap-lock. Don't reverse polarity of coil connection. Relays can be mounted (tightly) next to each other and in any attitude. **Warning!** Never use silicon near by relays

Operation

Before operating always apply voltage to coil to check correct operation.

Long term storage may corrode the silver on the relay pins. Just by plugging the relay into the socket, the female bifurcated receivers will automatically clean the corrosion on the pins and guarantee a good connection. Do not use the relay in places with flammable gas as the arc generated from switching could ignite gasses.

Maintenance

Correct operation of relay can easily be checked as transparent cover gives good visibility on the moving contacts. When the relay doesn't seem to operate correct, please check presence of coil voltage. Use a multimeter. If LED is used, coil presence should be indicated. If coil voltage is present, but the relay doesn't work, a short circuit of suppression diode is possible (The coil connection was reversed). If relay doesn't work after inspection, please replace relay unit by a similar model. Send defective relay back to manufacturer. Normal wear and tear excluded.

T2CBBU 400 relay Ordering scheme

Configuration:

This example represents a **T2CBBU 400 72 KO F 1**.

Description: T2CBBU 400 relay, Unom: 72 VDC, keying KO, relay cover for wire locking spring, test report in English

1. Relay model

T2CBBU 400

2 & 3. Nominal voltage and keying

24 GO	24 VDC				
36 xx	36 VDC				
48 xx	48 VDC				
72 KO	72 VDC				
96 xx	96 VDC				
110 xx	110 VDC				
xx = to be defined					

4. Weld no transfer

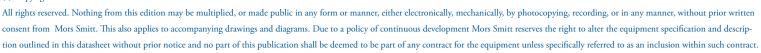
Weld no transfer standard

5. Relay cover type

-	Relay cover with lock pins
F	Relay cover forwire locking spring

6. Language on test report

_	French	
1	English	
2	Spanish	



DS-T2CBBU 400-V2.0 May 2013

www.morssmitt.com

(c) Copyright 2013

Mors Smitt France SAS Tour Rosny 2, Avenue du Général de Gaulle, F - 93118 Rosny-sous-Bois Cedex, FRANCE T +33 (0)1 4812 1440, F +33 (0)1 4855 9001 E sales@msrelais.com

Mors Smitt Asia Ltd. # 807, Billion Trade Centre, 31 Hung To Road Kwun Tong, Kowloon, HONG KONG SAR T +852 2343 5555, F +852 2343 6555 E info@morssmitt.hk

Mors Smitt B.V. Vrieslantlaan 6, 3526 AA Utrecht, NETHERLANDS T +31 (0)30 288 1311, F +31 (0)30 289 8816 E sales@nieaf-smitt.nl

Mors Smitt Technologies Inc. 420 Sackett Point Road North Haven, CT 06473, USA T +1 (203) 287 8858, F +1 (888) 287 8852 E mstechnologies@msrelais.com

Mors Smitt UK Ltd. Doulton Road, Cradley Heath West Midlands, B64 5QB, UK T +44 (0)1384 567 755, F +44 (0)1384 567 710 E info@morssmitt.co.uk