

/// AR Circuit breaker, hydraulic magnetic

Rugged circuit breaker for extreme reliability, within long endurance applications and harsh environments

AR

Circuit breaker

Description

Small hydraulic magnetic circuit breaker for railway applications, to protect electronic equipment and components against unintended high currents. Optional with integrated auxiliary contacts to monitor the circuit.

The trip point is always at maximum allowable current, independent of ambient temperature. Mid-trip handle to indicate clearly a breaker operation caused by electrical fault. With unique arc chute design which results in high interrupting capacities. Up to 6 poles which all break its electronic circuits when 1 breaker trips, for optimal protection of the system. Wide range of currents and options available.

Application

To be used in every application where electrical systems, circuits or components must be protected against too high currents. This situation can occur, when under strained or heavy use a motor or other load-generating component within the equipment will draw additional current from the power source. High currents cause the wires or components to overheat and ultimately burn up.

A circuit protection device should be employed at any point where a conductor size changes. Many electronic circuits and components like transformers have a lower overload withstand threshold level than conductors such as wires and cables. These components require circuit protection devices featuring very fast overload sensing and opening capabilities.

The AR-series circuit breaker can be used in all railway applications where protection against overload and short circuit is necessary, for example HVAC systems, (door) control systems, braking systems, passenger information systems, etc.

Features

- Precise, temperature independent operation
- Panel mount
- Integrated auxiliary contacts (optional)
- Small design
- Up to 6 poles configuration
- High interrupting capacities due to unique arc chute method
- Mid-trip handle for electrical trip indication (optional)
- Immediate resetting possible
- Wide current range: 0.1-50 A
- Wide choice of time delays
- Maximum voltage 90 VDC / 277 VAC
- High contact pressure \& longer contact life due to wiping self-cleaning contacts
- Flexibility by many options

Railway compliancy

All our circuit breakers are designed according:
EN 50155
IEC 60077-1/2/3/4 NF F 62-001-1/2/3
IEC 61373 NF F61-010
EN 50124-1 IEC 60068-2-30
EN 45545-2 IEC 60068-2-52
IEC 60947-2 MIL-STD-202G Method 107D, condition A
NF F16-101/102 MIL-STD-202G Method 106D

Technical specifications

Circuit breaker

AR

Electrical characteristics

Application voltage Rated voltage Min. operating voltage Max. operating voltage	DC for 1-6 poles 12-72 VDC 8.4 VDC 90 VDC Remark: 8.4-80 VDC: $\max 50 \mathrm{~A}$ 80-90 VDC: $\max 40 \mathrm{~A}$	AC for 1-6 pole 12-251 VAC 10.8 VAC 277 VAC	
Current ratings	0.1-50 A (other ratings on request)		
Voltage coils	6-65 VDC, 6-240 VAC (other ratings on request)		
Dielectric strength	$1500 \mathrm{VAC}, 60 \mathrm{~Hz}$ for 1 minute between all electrically isolated terminals		
Insulation resistance	Minimum of $100 \mathrm{M} \Omega$ @ 500 VDC		
Operating frequency	$50 / 60 \mathrm{~Hz}$, DC		
Max. interrupting cap.	IEC 60934	3000 A @ 65 VDC, 0.1 - 50 A 5000 A @ 65 VDC, $0.1-50 \mathrm{~A}$ (with backup fuse) 1500 A @ 80 VDC, $0.1-50$ A 3000 A @ 80 VDC, 0.1-50 A (with backup fuse) 3000 A @ 250 VAC, 0.1 - 50 A 5000 A @ 250 VAC, $0.1-30$ A (with backup fuse)	
Auxiliary switch	Integrated, load side. SPST. Auxiliary switch senses the on-off position of circuit breaker handle, as well as the open-closed position of breaker contact.		
		Silver auxiliary contacts	Gold auxiliary contac
	AC min. switching cap.	5-20 VAC: 100 mA ≥ 20 VAC: 10 mA	$5 \mathrm{~mA} / 5 \mathrm{VAC}$
	AC max. switching cap.	$5 \mathrm{~A} / 125 \mathrm{VAC}$	$100 \mathrm{~mA} / 125 \mathrm{VAC}$
	DC min switching cap.	$\begin{aligned} & \leq 20 \text { VDC: } 100 \mathrm{~mA} \\ & \geq 20 \mathrm{VDC}: 10 \mathrm{~mA} \end{aligned}$	$5 \mathrm{~mA} / 5 \mathrm{VDC}$
	DC max. switching cap.	3 A/32 VDC $100 \mathrm{~mA} / 125 \mathrm{VDC}$ (max. 2000 cycles)	$100 \mathrm{~mA} / 32$ VDC $2 \mathrm{~mA} / 110$ VDC (max. 2000 cycles)
	All loads mentioned are resistive loads.		

Mors Smitt
A Wabtec Company

Circuit breaker

General characteristics

Number of poles	1, 2, 3, 4, 5 or 6 poles For DC and AC applications: $\begin{aligned} 1-2 \text { poles } \leq 50 \mathrm{~A} \\ 3-6 \text { poles } \leq 30 \mathrm{~A}\end{aligned}$	
Terminals	Stud / screw / double faston	See circuit \& terminal diagrams.
Auxiliary contacts	Faston	See circuit \& terminal diagrams.
Mounting	The hydraulic-magnetic circuit breakers of Mors Smitt can be mounted in any position. A hydraulic-magnetic breaker is designed to "must hold" at 100% of the breaker's current rating and is calibrated to "must trip" at 125% of the breaker's current rating. If the mounting position is +90 degrees from a vertical panel mount (handle facing down, ceiling mount position) the trip and must hold rating is reduced by approximately 10%. In ceiling mount position 10% should be added to the rated current. In table mount position (handle facing up) the same rated current can be used as in wall position.	
Body	Blue colour	
Actuator	Several colours "I O" and/or "On-off" legends	
Int. circuit configuration	Series trip, shunt trip, relay trip \& switch only	
Weight (average, depending on configuration)	65 g per pole	
Width per pole	19.2 mm	
Material	Half shell - BMC 605 Handle - Valox 420SEO UL94V0 Terminals - Brass with acid tin plate	

Mechanical characteristics

$\left.\begin{array}{|l|l|}\hline \text { Endurance } & \begin{array}{l}10.000 \text { ON-OFF operations @ } 6 \text { per minute with rated current \& } \\ \text { voltage. }\end{array} \\ \hline \text { Trip free mechanism } & \begin{array}{l}\text { Trips on short-circuit or on overload, even when actuator is forcibly } \\ \text { held in the ON position. }\end{array} \\ \hline \begin{array}{l}\text { Trip indication: } \\ \text { Standard (no mid-trip) } \\ \text { Mid-trip }\end{array} & \begin{array}{l}\text { When manually moving the operating handle from OFF to ON } \\ \text { position, an auxiliary switch is actuated. When an overload or a short } \\ \text { circuit causes the circuit breaker to trip, the operating handle moves } \\ \text { positively to the OFF position and the auxiliary switch is actuated. }\end{array} \\ \text { Mid-trip with alarm switch } & \begin{array}{l}\text { When manually moving the operating handle from OFF to ON } \\ \text { position, an auxiliary switch is actuated. When an overload or a short } \\ \text { circuit causes the circuit breaker to trip, the operating handle moves } \\ \text { positively to the mid position and the auxiliary switch is actuated. }\end{array} \\ \text { When manually moving the operating handle from OFF to ON } \\ \text { position, an auxiliary switch is not actuated. When an overload or a } \\ \text { short circuit causes the circuit breaker to trip, the operating handle } \\ \text { moves positively to the mid position and the auxiliary switch is actua- } \\ \text { ted. In this case the auxiliary switch is only actuated by an electrical } \\ \text { trip, not by manually operating the handle. }\end{array}\right\}$

Remark: It is possible to manually switch the circuit breaker to the mid-trip position when the handle is switched from OFF to ON position quickly and with strong upwards force. Normally this won't occur in standard use. This is a normal phenomenon related to the design of the product.

Circuit breaker
 AR

Environmental characteristics

Environmental	Complies to EN $50125-1$ and IEC 60077-1
Operating temperature	$-50^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$
Vibration	IEC 61373, Category 1, class B body mounted
Shock	IEC 61373, Category 1, class A \& B body mounted
Thermal shock	Complies to MIL-107D 202 G method 107D, test condition A
Salt mist	Complies to IEC 60068-2-52 severity level 3
Damp heat	Complies to IEC 60068-2-30 test method Db variant 1
Fire \& smoke	Complies to NF F 16101, NF F 16102
Protection	IEC 60529, IP40 when a panel is mounted over the circuit breaker
Moisture resistance / humidity	Complies to MIL-STD 202G method

Resistance, impedance

Resistance, impedance values from Line to Load terminals
(Values based on series trip circuit breaker)

Circuit breaker

Inrush pulse tolerance

Table of time delay values

	PERCENT OF RATED CURRENT										
	DELAY	100\%	125\%	135\%	150\%	200\%	400\%	600\%	800\%	1000\%	1200\%
	10	No Trip	May Trip	---	. 032 MAX	. 024 MAX	. 020 MAX	. 018 MAX	. 016 MAX	. 015 MAX	. 013 MAX
	11	No Trip	. 013 - . 125	---	. 010 -. 070	. 008 - . 032	. 006 - . 020	. $005-.020$. 004 - . 020	. 004 -. 020	. 004 -. 020
	12	No Trip	. $500-6.50$	---	. $300-3.00$. $130-1.20$. $031-.220$. 011 -. 120	. 004 - . 090	. 004 - . 060	. 004 - . 040
	14	No Trip	2.00-60.0	---	1.20-40.0	. $600-20.0$. $150-3.00$. $030-1.30$. 004 - . 600	. 004 - . 100	. 004 - . 100
	16	No Trip	45.0-345	---	20.0-150	9.00-60.0	1.40-11.4	.150-5.80	. 009 - 3.70	. 005 -1.70	. $005-.500$
	20	No Trip	May Trip	---	. 040 MAX	. 035 MAX	. 030 MAX	. 025 MAX	. 020 MAX	. 017 MAX	. 015 MAX
	21	No Trip	. 014 -. 150	---	. 011 -. 095	. 008 - . 055	. $006-.035$. $005-.027$. $005-.021$. $004-.018$. $004-.017$
TRIP	22	No Trip	. $700-12.0$	---	. $350-4.00$. $130-1.30$. 027 - . 220	. $008-.130$. 004 -. 090	. 004 -. 045	. 004 - . 040
TIME	24	No Trip	10.0-160	---	6.00-60.0	2.20-20.0	. $300-3.00$. $050-1.30$. 007 - . 500	. $005-.060$. 005 - . 040
(SECONDS)	26	No Trip	50.0-700	---	32.0-350	10.0-90.0	1.50-15.0	. $500-7.00$. 020 - 3.00	. 006 - 2.00	. 005 -1.00
	42	No Trip	. $700-12.0$	---	. $400-6.00$. $180-2.30$. $050-.600$. 026 - . 300	. 018 - . 200	. 014 -. 150	. 012 -. 130
	44	No Trip	7.00-100	---	3.00-50.0	1.10-18.0	. $220-3.00$. $120-1.70$. 075 -1.20	. $050-.850$. 042 - . 720
	46	No Trip	50.0-700	---	31.0-350	12.0-150	1.50-20.0	. $700-10.0$. 404 - 7.90	. $260-6.50$. $198-5.80$
	52	No Trip	. $500-6.50$	---	. $340-4.50$. $180-2.30$. $051-.600$. $030-.320$. 018 - . 220	. 014 - . 200	. $012-.130$
	54	No Trip	1.50-50.0	---	. $750-35.0$. $350-18.0$. $110-3.00$. 070 - 1.70	. 045 - 1.40	. 039 - 1.30	. $035-1.30$
	56	No Trip	45.0-345	---	19.0-170	8.50-100	1.24-15.0	. 410 -9.00	. 256 - 8.00	. $210-5.50$. $198-2.90$

Notes:

- Delay curves $11,12,14,16,21,22,24,26,42,44,46,52,54,56$: Breakers to hold 100% and must trip at 125% of rated current and greater within the time limit shown in this curve
- Delay curves 10, 20: Breakers to hold 100% and must trip at 150% of rated current and greater within the time limit shown in this curve
- All curves: Curve data shown represents breaker response at ambient temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ with no preloading. Breakers are mounted in standard wall-mount position. Delay times may vary at different temperature, the trip current rating remains unchanged
- On 50 amp and less current ratings, the minimum inrush pulse tolerance handling capability is 12 times the rated current on standard delays and 25 times the rated current on high inrush delays. These values are based on a $60 \mathrm{~Hz} 1 / 2 \mathrm{cycle}, 8.33 \mathrm{~ms}$ pulse. High inrush delays should be specified for applications with high initial surge currents of short duration such as switching power supplies, highly capacitive loads and transformer loads

Circuit breaker AR

Time delay values

Ultrashort

Short

Time delay values
High Inrush AC

Short

Medium

Long

Circuit breaker AR

Time delay values

DC

Instantaneous

Ultrashort

Medium

Long

Short

Time delay values

Circuit breaker AR

Circuit \& terminal diagrams

HANDLE POSITION VS. AUX/ALARM SWITCH MODE

	STANDARD C/B		MID TRIP C/B		MID TRIP C/B + ALARM SWITCH MODE	
$\begin{aligned} & \text { CIRCUIT } \\ & \text { BREAKER } \\ & \text { MODE } \end{aligned}$	HANDLE POSITION	AUX. SWITCH MODE	HANDLE POSITION	AUX. SWITCH MODE	HANDLE POSITION	AUX. SWITCH MODE
OFF						
ON						
$\begin{aligned} & \text { ELECTRICAL } \\ & \text { TRIP } \end{aligned}$		$\left.\varlimsup_{N C}^{\sim}\right\|_{\text {NO }}$				

Circuit breaker
 AR

Circuit \& terminal diagrams

Circuit breaker
Circuit \& terminal diagrams

AR circuit breaker with option U: double Faston terminals

1-POLE

2-POLE

3-POLE

4-POLE

PANEL CUTOUT DETAIL

[^0]Mors Smitt

Circuit breaker

Circuit \& terminal diagrams

AR circuit breaker with option Y: Y type Faston terminals

TERMINAL DETAIL

TAB (QC) <=10AMP

Circuit breaker
 AR

Form \& fit drawings

Mounted cover auxiliary switch

Notes: 1. All dimensions are in inches [millimeters]
2. Tolerance $\pm 0.02020[0.51]$ unless otherwise specified

Ordering scheme AR - page 1

Circuit breaker

Ordering scheme AR - page 2

Mors Smitt

Circuit breaker
 AR

Notes:

1. Available up to two poles with AC or DC delays
2. Separate pole type voltage coils not rated for continuous duty. Available only with delay codes 10,20 \& 30
3. Available with circuit codes B \& D only
4. For 0.1-30 A: select current code 630

For 35-50 A: select current code 650
5. Available with terminal codes 1,2 \& 3.Current rating limited to 30 A maximum
6. Consult Mors Smitt for available dual coil options, as special catalogue number is required. With shunt construction, dual coils will trip instantaneously on line voltage. Dual coils require 30 VA minimum power to trip and are rated for intermittent duty only
7. Actuator code:

S: Handle moves to mid-position only upon electrical trip of the breaker, available with all circuit codes, except switch only
T: Handle moves to mid-position and alarm switch activates only upon electrical trip of the breaker, available with circuit codes B \& C
8. Single pole only
9. On muli-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole (rear view)
10. Screw terminals are recommended on ratings higher than 20 A

Ratings over 30 A are only available with terminals codes 5, 9, G and H
11. Terminal code 1; up to 30 A , but not recommended over 20 A
12. Terminal codes $3,5,7,9, E, G$ and H (bus type) are supplied with lock washers Terminals code M (M6 threaded stud) is supplied with lock and flat washers
13. TUV certified: not for switch only circuit and only for actuator legend 'I-O' and dual legend UL recognized: for most applications, not all
Special applications without approvals: agency approval code A
14. Terminal code Y : up to 10 A , no agency approval

Over 10 million Mors Smitt relays in use in rail transport applications worldwide!

Mors Smitt Asia Ltd.
26/F., Casey Aberdeen House 38 Heung Yip Road, Wong Chuk Hang Hong Kong
Tel: +852 2343555
sales.msa@wabtec.com
Wabtec Netherlands B.V.
Darwinstraat 10,
6718 XR Ede, Netherlands
Tel: +31 (0)88 6004500
wnl_salessupport@wabtec.com

Mors Smitt France SAS

2 Rue de la Mandinière 72300 Sablé-sur-Sarthe, France Tel: +33 (0) 243928200 sales.msf@wabtec.com

Mors Smitt Technologies Ltd.
1010 Johnson Drive,
Buffalo Grove, IL 60089-6918, USA

Mors Smitt UK

Graycar Business Park, Burton on Trent, DE13 8EN, UK Tel: +44 (0)1283 357263
msu_sales@wabtec.com

RMS Mors Smitt
19 Southern Court,
Keysborough, VIC 3173, Australia
Tel: +61 (0)3 85441200
sales.rms@wabtec.com

[^1]
[^0]: Notes: 1. All dimensions are in inches [millimeters]
 2. Tolerance ± 0.020 [0.51] unless otherwise specified

[^1]: (c) Copyright 2022

 All rights reserved. Nothing from this edition may be multiplied, or made public in any form or manner, either electronically, mechanically, by photocopying, recording, or in any manner without prior written consent from Mors Smitt. This also applies to accompanying drawings and diagrams. Due to a policy of continuous development Mors Smitt reserves the right to alter the equipment specification and description outlined in this datasheet without prior notice and no part of this publication shall be deemed to be part of any contract for the equipment unless specifically referred to as an inclusion within such contract. Mors Smitt does not warrant that any of the information contained herein is complete, accurate, free from potential errors, or fit for any particular purpose. Mors Smitt does not accept any responsibility arising from any party's use of the information in this document.

